These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 17113674)
1. Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase. Tembe S; Inamdar S; Haram S; Karve M; D'Souza SF J Biotechnol; 2007 Jan; 128(1):80-5. PubMed ID: 17113674 [TBL] [Abstract][Full Text] [Related]
2. Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. Tembe S; Karve M; Inamdar S; Haram S; Melo J; D'Souza SF Anal Biochem; 2006 Feb; 349(1):72-7. PubMed ID: 16360108 [TBL] [Abstract][Full Text] [Related]
3. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer. Singh RP Analyst; 2011 Mar; 136(6):1216-21. PubMed ID: 21240422 [TBL] [Abstract][Full Text] [Related]
4. Glutaraldehyde activated eggshell membrane for immobilization of tyrosinase from Amorphophallus companulatus: application in construction of electrochemical biosensor for dopamine. Tembe S; Kubal BS; Karve M; D'Souza SF Anal Chim Acta; 2008 Apr; 612(2):212-7. PubMed ID: 18358868 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD. Bagal DS; Vijayan A; Aiyer RC; Karekar RN; Karve MS Biosens Bioelectron; 2007 Jun; 22(12):3072-9. PubMed ID: 17314040 [TBL] [Abstract][Full Text] [Related]
6. Reagentless biosensor for phenolic compounds based on tyrosinase entrapped within gelatine film. Li N; Xue MH; Yao H; Zhu JJ Anal Bioanal Chem; 2005 Dec; 383(7-8):1127-32. PubMed ID: 16237545 [TBL] [Abstract][Full Text] [Related]
7. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Wang S; Tan Y; Zhao D; Liu G Biosens Bioelectron; 2008 Jul; 23(12):1781-7. PubMed ID: 18387292 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Mita DG; Attanasio A; Arduini F; Diano N; Grano V; Bencivenga U; Rossi S; Amine A; Moscone D Biosens Bioelectron; 2007 Aug; 23(1):60-5. PubMed ID: 17467970 [TBL] [Abstract][Full Text] [Related]
9. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Bagal-Kestwal D; Karve MS; Kakade B; Pillai VK Biosens Bioelectron; 2008 Dec; 24(4):657-64. PubMed ID: 18667298 [TBL] [Abstract][Full Text] [Related]
10. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Karim MN; Lee JE; Lee HJ Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658 [TBL] [Abstract][Full Text] [Related]
11. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Pérez López B; Merkoçi A Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175 [TBL] [Abstract][Full Text] [Related]
12. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Campanhã Vicentini F; Garcia LL; Figueiredo-Filho LC; Janegitz BC; Fatibello-Filho O Enzyme Microb Technol; 2016 Mar; 84():17-23. PubMed ID: 26827770 [TBL] [Abstract][Full Text] [Related]
13. Determination of L-phenylalanine based on an NADH-detecting biosensor. Huang T; Warsinke A; Kuwana T; Scheller FW Anal Chem; 1998 Mar; 70(5):991-7. PubMed ID: 9511473 [TBL] [Abstract][Full Text] [Related]
14. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Hervás Pérez JP; Sánchez-Paniagua López M; López-Cabarcos E; López-Ruiz B Biosens Bioelectron; 2006 Sep; 22(3):429-39. PubMed ID: 16806888 [TBL] [Abstract][Full Text] [Related]
15. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Portaccio M; Di Tuoro D; Arduini F; Lepore M; Mita DG; Diano N; Mita L; Moscone D Biosens Bioelectron; 2010 May; 25(9):2003-8. PubMed ID: 20176471 [TBL] [Abstract][Full Text] [Related]
16. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor. Serra B; Morales MD; Reviejo AJ; Hall EH; Pingarrón JM Anal Biochem; 2005 Jan; 336(2):289-94. PubMed ID: 15620894 [TBL] [Abstract][Full Text] [Related]
17. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Carralero V; Mena ML; Gonzalez-Cortés A; Yáñez-Sedeño P; Pingarrón JM Biosens Bioelectron; 2006 Dec; 22(5):730-6. PubMed ID: 16569498 [TBL] [Abstract][Full Text] [Related]
18. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Yu J; Liu S; Ju H Biosens Bioelectron; 2003 Dec; 19(5):509-14. PubMed ID: 14623476 [TBL] [Abstract][Full Text] [Related]
19. A novel tyrosinase biosensor based on chitosan-carbon-coated nickel nanocomposite film. Yang L; Xiong H; Zhang X; Wang S Bioelectrochemistry; 2012 Apr; 84():44-8. PubMed ID: 22172649 [TBL] [Abstract][Full Text] [Related]
20. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film. Ibáñez-Redín G; Silva TA; Vicentini FC; Fatibello-Filho O Enzyme Microb Technol; 2018 Sep; 116():41-47. PubMed ID: 29887015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]