BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17113856)

  • 1. Characterization of specific donor binding to alpha1,4-N-acetylhexosaminyltransferase EXTL2 using isothermal titration calorimetry.
    Sobhany M; Negishi M
    Methods Enzymol; 2006; 416():3-12. PubMed ID: 17113856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-step mechanism that determines the donor binding specificity of human UDP-N-acetylhexosaminyltransferase.
    Sobhany M; Dong J; Negishi M
    J Biol Chem; 2005 Jun; 280(25):23441-5. PubMed ID: 15831490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate.
    Kitagawa H; Shimakawa H; Sugahara K
    J Biol Chem; 1999 May; 274(20):13933-7. PubMed ID: 10318803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isothermal titration calorimetry for studying protein-ligand interactions.
    Damian L
    Methods Mol Biol; 2013; 1008():103-18. PubMed ID: 23729250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic Thermodynamics of Protein-Ligand Binding by Isothermal Titration Calorimetry as Aid to Drug Design.
    Paketurytė V; Zubrienė A; Ladbury JE; Matulis D
    Methods Mol Biol; 2019; 1964():61-74. PubMed ID: 30929235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2.
    Negishi M; Dong J; Darden TA; Pedersen LG; Pedersen LC
    Biochem Biophys Res Commun; 2003 Apr; 303(2):393-8. PubMed ID: 12659829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of protein-protein interactions by isothermal titration calorimetry.
    Velazquez-Campoy A; Leavitt SA; Freire E
    Methods Mol Biol; 2004; 261():35-54. PubMed ID: 15064448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis.
    Pedersen LC; Dong J; Taniguchi F; Kitagawa H; Krahn JM; Pedersen LG; Sugahara K; Negishi M
    J Biol Chem; 2003 Apr; 278(16):14420-8. PubMed ID: 12562774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-acetyl-binding pocket of N-acetylglucosaminyltransferases also accommodates a sugar analog with a chemical handle at C2.
    Pasek M; Ramakrishnan B; Boeggeman E; Mercer N; Dulcey AE; Griffiths GL; Qasba PK
    Glycobiology; 2012 Mar; 22(3):379-88. PubMed ID: 21868414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal titration calorimetry of protein-protein interactions.
    Pierce MM; Raman CS; Nall BT
    Methods; 1999 Oct; 19(2):213-21. PubMed ID: 10527727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of protein-ligand interactions: history, presence, and future aspects.
    Perozzo R; Folkers G; Scapozza L
    J Recept Signal Transduct Res; 2004 Feb; 24(1-2):1-52. PubMed ID: 15344878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic Analysis of Protein-Lipid Interactions by Isothermal Titration Calorimetry.
    Swamy MJ; Sankhala RS; Singh BP
    Methods Mol Biol; 2019; 2003():71-89. PubMed ID: 31218614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the thermodynamics of protein-lipid interactions by isothermal titration calorimetry.
    Swamy MJ; Sankhala RS
    Methods Mol Biol; 2013; 974():37-53. PubMed ID: 23404271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions.
    Prozeller D; Morsbach S; Landfester K
    Nanoscale; 2019 Nov; 11(41):19265-19273. PubMed ID: 31549702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of Lipid Binding to Acyl-CoA-Binding Proteins (ACBP) Using Isothermal Titration Calorimetry (ITC).
    Guo ZH; Chye ML
    Methods Mol Biol; 2021; 2295():401-415. PubMed ID: 34047990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.
    Huang R; Lau BLT
    Biochim Biophys Acta; 2016 May; 1860(5):945-956. PubMed ID: 26851677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isothermal titration calorimetry of ion-coupled membrane transporters.
    Boudker O; Oh S
    Methods; 2015 Apr; 76():171-182. PubMed ID: 25676707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isothermal titration calorimetry of membrane proteins - progress and challenges.
    Rajarathnam K; Rösgen J
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):69-77. PubMed ID: 23747362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal titration calorimetry for drug design: Precision of the enthalpy and binding constant measurements and comparison of the instruments.
    Linkuvienė V; Krainer G; Chen WY; Matulis D
    Anal Biochem; 2016 Dec; 515():61-64. PubMed ID: 27717855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Anesthetic-Protein Interactions by a Thermodynamic Approach.
    Babazada H; Liu R
    Methods Enzymol; 2018; 603():103-113. PubMed ID: 29673520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.