BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17113996)

  • 1. Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4.
    Martinez-Fleites C; Proctor M; Roberts S; Bolam DN; Gilbert HJ; Davies GJ
    Chem Biol; 2006 Nov; 13(11):1143-52. PubMed ID: 17113996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases.
    Tarbouriech N; Charnock SJ; Davies GJ
    J Mol Biol; 2001 Dec; 314(4):655-61. PubMed ID: 11733986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose.
    Grizot S; Salem M; Vongsouthi V; Durand L; Moreau F; Dohi H; Vincent S; Escaich S; Ducruix A
    J Mol Biol; 2006 Oct; 363(2):383-94. PubMed ID: 16963083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fold recognition analysis of glycosyltransferase families: further members of structural superfamilies.
    Franco OL; Rigden DJ
    Glycobiology; 2003 Oct; 13(10):707-12. PubMed ID: 12881407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures and mechanisms of glycosyltransferases.
    Breton C; Snajdrová L; Jeanneau C; Koca J; Imberty A
    Glycobiology; 2006 Feb; 16(2):29R-37R. PubMed ID: 16037492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor.
    Brzezinski K; Stepkowski T; Panjikar S; Bujacz G; Jaskolski M
    Acta Biochim Pol; 2007; 54(3):537-49. PubMed ID: 17762900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase.
    Larivière L; Sommer N; Moréra S
    J Mol Biol; 2005 Sep; 352(1):139-50. PubMed ID: 16081100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes.
    Sunita S; Tkaczuk KL; Purta E; Kasprzak JM; Douthwaite S; Bujnicki JM; Sivaraman J
    J Mol Biol; 2008 Nov; 383(3):652-66. PubMed ID: 18789337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T; Mikami B; Hashimoto W; Murata K
    J Mol Biol; 2008 Apr; 377(5):1443-59. PubMed ID: 18328504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli.
    Liebau J; Fu B; Brown C; Mäler L
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):683-690. PubMed ID: 29225173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question.
    Watson KA; McCleverty C; Geremia S; Cottaz S; Driguez H; Johnson LN
    EMBO J; 1999 Sep; 18(17):4619-32. PubMed ID: 10469642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane Interaction of the Glycosyltransferase WaaG.
    Liebau J; Pettersson P; Szpryngiel S; Mäler L
    Biophys J; 2015 Aug; 109(3):552-63. PubMed ID: 26244737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insights into O-methyltransferase from Bacillus cereus.
    Cho JH; Park Y; Ahn JH; Lim Y; Rhee S
    J Mol Biol; 2008 Oct; 382(4):987-97. PubMed ID: 18706426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of the antibiotic resistance-mediating methyltransferase AviRb from Streptomyces viridochromogenes.
    Mosbacher TG; Bechthold A; Schulz GE
    J Mol Biol; 2005 Jan; 345(3):535-45. PubMed ID: 15581897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides.
    Luzhetskyy A; Vente A; Bechthold A
    Mol Biosyst; 2005 Jul; 1(2):117-26. PubMed ID: 16880973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharide-synthesizing glycosyltransferases and carbohydrate binding modules: the case of starch synthase III.
    Gomez-Casati DF; Martín M; Busi MV
    Protein Pept Lett; 2013 Aug; 20(8):856-63. PubMed ID: 23286550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8.
    Ihara H; Ikeda Y; Toma S; Wang X; Suzuki T; Gu J; Miyoshi E; Tsukihara T; Honke K; Matsumoto A; Nakagawa A; Taniguchi N
    Glycobiology; 2007 May; 17(5):455-66. PubMed ID: 17172260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds.
    Härle J; Bechthold A
    Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ADP-glucose binding site of the Escherichia coli glycogen synthase.
    Yep A; Ballicora MA; Preiss J
    Arch Biochem Biophys; 2006 Sep; 453(2):188-96. PubMed ID: 16919233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.