BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1711420)

  • 1. Polymorphic phospholipid phase transitions as tools to understand peptide-lipid interactions.
    Tournois H; de Kruijff B
    Chem Phys Lipids; 1991 Mar; 57(2-3):327-40. PubMed ID: 1711420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes.
    Maget-Dana R
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):109-40. PubMed ID: 10590305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Structures: From Model Membranes to Live Cells.
    Sani MA; Separovic F
    Chemistry; 2018 Jan; 24(2):286-291. PubMed ID: 29068097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan orientations in membrane-bound gramicidin and melittin-a comparative linear dichroism study on transmembrane and surface-bound peptides.
    Svensson FR; Lincoln P; Nordén B; Esbjörner EK
    Biochim Biophys Acta; 2011 Jan; 1808(1):219-28. PubMed ID: 20951675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes.
    Abraham T; Prenner EJ; Lewis RN; Mant CT; Keller S; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 2014 May; 1838(5):1420-9. PubMed ID: 24388950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids.
    Sharon M; Oren Z; Shai Y; Anglister J
    Biochemistry; 1999 Nov; 38(46):15305-16. PubMed ID: 10563816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stopped-flow fluorometric study of the interaction of melittin with phospholipid bilayers: importance of the physical state of the bilayer and the acyl chain length.
    Bradrick TD; Philippetis A; Georghiou S
    Biophys J; 1995 Nov; 69(5):1999-2010. PubMed ID: 8580343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.
    La Rocca P; Biggin PC; Tieleman DP; Sansom MS
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):185-200. PubMed ID: 10590308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-forming peptides induce rapid phospholipid flip-flop in membranes.
    Fattal E; Nir S; Parente RA; Szoka FC
    Biochemistry; 1994 May; 33(21):6721-31. PubMed ID: 8204607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.
    Therrien A; Fournier A; Lafleur M
    J Phys Chem B; 2016 May; 120(17):3993-4002. PubMed ID: 27054924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
    Bernèche S; Nina M; Roux B
    Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin.
    Anglin TC; Brown KL; Conboy JC
    J Struct Biol; 2009 Oct; 168(1):37-52. PubMed ID: 19508895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy.
    Mantsch HH; McElhaney RN
    Chem Phys Lipids; 1991 Mar; 57(2-3):213-26. PubMed ID: 2054905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron diffraction studies of amphipathic helices in phospholipid bilayers.
    Bradshaw JP; Duff KC; Gilchrist PJ; Saxena AM
    Basic Life Sci; 1996; 64():191-202. PubMed ID: 9031512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids.
    Afonin S; Glaser RW; Sachse C; Salgado J; Wadhwani P; Ulrich AS
    Biochim Biophys Acta; 2014 Sep; 1838(9):2260-8. PubMed ID: 24699372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.