BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17114216)

  • 41. Can body surface microvolt T-wave alternans distinguish concordant and discordant intracardiac alternans?
    Floré V; Claus P; Symons R; Smith GL; Sipido KR; Willems R
    Pacing Clin Electrophysiol; 2013 Aug; 36(8):1007-16. PubMed ID: 23614703
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulations of propagated mouse ventricular action potentials: effects of molecular heterogeneity.
    Bondarenko VE; Rasmusson RL
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1816-32. PubMed ID: 17586617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between extracellular T-wave height, T-wave alternans amplitude, and tissue action potential alternans: a 1-dimensional computer modeling study.
    Doshi AN; Idriss SF
    J Electrocardiol; 2009; 42(6):549-54. PubMed ID: 19616219
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stretch-Activated Current Can Promote or Suppress Cardiac Alternans Depending on Voltage-Calcium Interaction.
    Galice S; Bers DM; Sato D
    Biophys J; 2016 Jun; 110(12):2671-2677. PubMed ID: 27332125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vulnerable windows define susceptibility to alternans and spatial discordance.
    Weinberg S; Malhotra N; Tung L
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1727-37. PubMed ID: 20363894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Microvolt level T wave alternans: a new marker for noninvasive risk stratification].
    Klingenheben T; Credner S; Li YG; Bender B; Hohnloser SH
    Z Kardiol; 2000; 89 Suppl 3():57-61. PubMed ID: 10810786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular correlates of repolarization alternans in cardiac myocytes.
    Wan X; Laurita KR; Pruvot EJ; Rosenbaum DS
    J Mol Cell Cardiol; 2005 Sep; 39(3):419-28. PubMed ID: 16026799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The link between repolarisation alternans and ventricular arrhythmia: does the cellular phenomenon extend to the clinical problem?
    Myles RC; Burton FL; Cobbe SM; Smith GL
    J Mol Cell Cardiol; 2008 Jul; 45(1):1-10. PubMed ID: 18501925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Initial and Secondary ST-T Alternans During Acute Myocardial Ischemia in the In-Situ Pig Heart.
    Watanabe I; Gettes LS
    Int Heart J; 2016 May; 57(3):327-35. PubMed ID: 27150000
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans.
    Sato D; Shiferaw Y; Qu Z; Garfinkel A; Weiss JN; Karma A
    Biophys J; 2007 Feb; 92(4):L33-5. PubMed ID: 17172300
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic insights from targeted molecular profiling of repolarization alternans in the intact human heart.
    Orini M; Yanni J; Taggart P; Hanson B; Hayward M; Smith A; Zhang H; Colman M; Jones G; Jie X; Dobrzynski H; Boyett MR; Lambiase PD
    Europace; 2019 Jun; 21(6):981-989. PubMed ID: 30753421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered dynamics of action potential restitution and alternans in humans with structural heart disease.
    Koller ML; Maier SK; Gelzer AR; Bauer WR; Meesmann M; Gilmour RF
    Circulation; 2005 Sep; 112(11):1542-8. PubMed ID: 16157783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship between T-wave alternans magnitude and the corresponding T-wave height.
    Madias JE
    J Electrocardiol; 2010; 43(1):54-5. PubMed ID: 19726053
    [No Abstract]   [Full Text] [Related]  

  • 54. Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study.
    Nash MP; Bradley CP; Sutton PM; Clayton RH; Kallis P; Hayward MP; Paterson DJ; Taggart P
    Exp Physiol; 2006 Mar; 91(2):339-54. PubMed ID: 16452121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alternating conduction in the ischaemic border zone as precursor of reentrant arrhythmias: a simulation study.
    Bernus O; Zemlin CW; Zaritsky RM; Mironov SF; Pertsov AM
    Europace; 2005 Sep; 7 Suppl 2():93-104. PubMed ID: 16102507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrical alternans and the onset of rate-induced pulsus alternans during acute regional ischaemia in the anaesthetised pig heart.
    Murphy CF; Horner SM; Dick DJ; Coen B; Lab MJ
    Cardiovasc Res; 1996 Jul; 32(1):138-47. PubMed ID: 8776411
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alternans and 2:1 rhythms in an ionic model of heart cells.
    Zemlin C; Storch E; Herzel H
    Biosystems; 2002; 66(1-2):1-10. PubMed ID: 12204437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of action potential duration alternans in canine cardiac ventricular tissue.
    Kanu UB; Iravanian S; Gilmour RF; Christini DJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):894-904. PubMed ID: 21041155
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration.
    Janusek D; Kania M; Zaczek R; Zavala-Fernandez H; Maniewski R
    Comput Methods Programs Biomed; 2014 Apr; 114(1):102-8. PubMed ID: 24573128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-Time Closed-Loop Suppression of Repolarization Alternans Reduces Arrhythmia Susceptibility In Vivo.
    Merchant FM; Sayadi O; Sohn K; Weiss EH; Puppala D; Doddamani R; Singh JP; Heist EK; Owen C; Kulkarni K; Armoundas AA
    Circ Arrhythm Electrophysiol; 2020 Jun; 13(6):e008186. PubMed ID: 32434448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.