BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17114260)

  • 1. Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus.
    Hall JA; Pajor AM
    J Bacteriol; 2007 Feb; 189(3):880-5. PubMed ID: 17114260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a Na(+)-coupled dicarboxylate carrier protein from Staphylococcus aureus.
    Hall JA; Pajor AM
    J Bacteriol; 2005 Aug; 187(15):5189-94. PubMed ID: 16030212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of a Na(+)-coupled dicarboxylate transporter from Bacillus licheniformis.
    Strickler MA; Hall JA; Gaiko O; Pajor AM
    Biochim Biophys Acta; 2009 Dec; 1788(12):2489-96. PubMed ID: 19840771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
    Rhie MN; Yoon HE; Oh HY; Zedler S; Unden G; Kim OB
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1533-1544. PubMed ID: 24742960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonsteroidal anti-inflammatory drugs and other anthranilic acids inhibit the Na(+)/dicarboxylate symporter from Staphylococcus aureus.
    Pajor AM; Sun NN
    Biochemistry; 2013 Apr; 52(17):2924-32. PubMed ID: 23566164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of conformationally sensitive amino acids in the Na(+)/dicarboxylate symporter (SdcS).
    Joshi AD; Pajor AM
    Biochemistry; 2009 Apr; 48(13):3017-24. PubMed ID: 19260674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of C(4)-dicarboxylates in Wolinella succinogenes.
    Ullmann R; Gross R; Simon J; Unden G; Kröger A
    J Bacteriol; 2000 Oct; 182(20):5757-64. PubMed ID: 11004174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter.
    Kekuda R; Wang H; Huang W; Pajor AM; Leibach FH; Devoe LD; Prasad PD; Ganapathy V
    J Biol Chem; 1999 Feb; 274(6):3422-9. PubMed ID: 9920886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of SdcF from Bacillus licheniformis, a homolog of the SLC13 Na⁺/dicarboxylate transporters.
    Pajor AM; Sun NN; Leung A
    J Membr Biol; 2013 Sep; 246(9):705-15. PubMed ID: 23979173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span.
    Fei YJ; Inoue K; Ganapathy V
    J Biol Chem; 2003 Feb; 278(8):6136-44. PubMed ID: 12480943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C4-dicarboxylate carriers and sensors in bacteria.
    Janausch IG; Zientz E; Tran QH; Kröger A; Unden G
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):39-56. PubMed ID: 11803016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of N-acetylaspartate by the Na(+)-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain.
    Huang W; Wang H; Kekuda R; Fei YJ; Friedrich A; Wang J; Conway SJ; Cameron RS; Leibach FH; Ganapathy V
    J Pharmacol Exp Ther; 2000 Oct; 295(1):392-403. PubMed ID: 10992006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
    Youn JW; Jolkver E; Krämer R; Marin K; Wendisch VF
    J Bacteriol; 2009 Sep; 191(17):5480-8. PubMed ID: 19581365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threonine-509 is a determinant of apparent affinity for both substrate and cations in the human Na+/dicarboxylate cotransporter.
    Weerachayaphorn J; Pajor AM
    Biochemistry; 2008 Jan; 47(3):1087-93. PubMed ID: 18161988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent accessibility changes in a Na
    Sampson CDD; Stewart MJ; Mindell JA; Mulligan C
    J Biol Chem; 2020 Dec; 295(52):18524-18538. PubMed ID: 33087444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae.
    Mulligan C; Fitzgerald GA; Wang DN; Mindell JA
    J Gen Physiol; 2014 Jun; 143(6):745-59. PubMed ID: 24821967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of ion - substrate coupling in the Na
    Sauer DB; Marden JJ; Sudar JC; Song J; Mulligan C; Wang DN
    Nat Commun; 2022 May; 13(1):2644. PubMed ID: 35551191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis.
    Groeneveld M; Weme RG; Duurkens RH; Slotboom DJ
    J Bacteriol; 2010 Jun; 192(11):2900-7. PubMed ID: 20363944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-coupled transporters for Krebs cycle intermediates.
    Pajor AM
    Annu Rev Physiol; 1999; 61():663-82. PubMed ID: 10099705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.