BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 17114276)

  • 1. The mechanical diversity of stomata and its significance in gas-exchange control.
    Franks PJ; Farquhar GD
    Plant Physiol; 2007 Jan; 143(1):78-87. PubMed ID: 17114276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana.
    Franks PJ; Farquhar GD
    Plant Physiol; 2001 Feb; 125(2):935-42. PubMed ID: 11161050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism.
    Kaiser H; Kappen L
    J Exp Bot; 2001 Jun; 52(359):1303-13. PubMed ID: 11432949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.
    Shtein I; Shelef Y; Marom Z; Zelinger E; Schwartz A; Popper ZA; Bar-On B; Harpaz-Saad S
    Ann Bot; 2017 Apr; 119(6):1021-1033. PubMed ID: 28158449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.
    Papanatsiou M; Amtmann A; Blatt MR
    Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function.
    Gray A; Liu L; Facette M
    Front Plant Sci; 2020; 11():881. PubMed ID: 32714346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat.
    Corso D; Delzon S; Lamarque LJ; Cochard H; Torres-Ruiz JM; King A; Brodribb T
    Plant Cell Environ; 2020 Apr; 43(4):854-865. PubMed ID: 31953855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal closure in maize is mediated by subsidiary cells and the PAN2 receptor.
    Liu L; Ashraf MA; Morrow T; Facette M
    New Phytol; 2024 Feb; 241(3):1130-1143. PubMed ID: 37936339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical advantage makes stomatal opening speed a function of evaporative demand.
    Pichaco J; Manandhar A; McAdam SAM
    Plant Physiol; 2024 Apr; 195(1):370-377. PubMed ID: 38217870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species.
    Xiong D; Douthe C; Flexas J
    Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulics Regulate Stomatal Responses to Changes in Leaf Water Status in the Fern
    Cardoso AA; Randall JM; McAdam SAM
    Plant Physiol; 2019 Feb; 179(2):533-543. PubMed ID: 30538169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal responses to humidity in isolated epidermes.
    Shope JC; Peak D; Mott KA
    Plant Cell Environ; 2008 Sep; 31(9):1290-8. PubMed ID: 18541007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Form, development and function of grass stomata.
    Nunes TDG; Zhang D; Raissig MT
    Plant J; 2020 Feb; 101(4):780-799. PubMed ID: 31571301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the mesophyll on stomatal responses in amphistomatous leaves.
    Mott KA; Peak D
    Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatal control and hydraulic conductance, with special reference to tall trees.
    Franks PJ
    Tree Physiol; 2004 Aug; 24(8):865-78. PubMed ID: 15172837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll.
    Kaiser H
    Plant Cell Environ; 2009 Aug; 32(8):1091-8. PubMed ID: 19422613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rate equation model of stomatal responses to vapour pressure deficit and drought.
    Eamus D; Shanahan ST
    BMC Ecol; 2002 Aug; 2():8. PubMed ID: 12153703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive origins of stomatal control in vascular plants.
    Brodribb TJ; McAdam SA
    Science; 2011 Feb; 331(6017):582-5. PubMed ID: 21163966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.