BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17114353)

  • 1. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors.
    Tillemans V; Leponce I; Rausin G; Dispa L; Motte P
    Plant Cell; 2006 Nov; 18(11):3218-34. PubMed ID: 17114353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.
    Rausin G; Tillemans V; Stankovic N; Hanikenne M; Motte P
    Plant Physiol; 2010 May; 153(1):273-84. PubMed ID: 20237019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells.
    Tillemans V; Dispa L; Remacle C; Collinge M; Motte P
    Plant J; 2005 Feb; 41(4):567-82. PubMed ID: 15686520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular and subnuclear distribution of high-light responsive serine/arginine-rich proteins, atSR45a and atSR30, in Arabidopsis thaliana.
    Mori T; Yoshimura K; Nosaka R; Sakuyama H; Koike Y; Tanabe N; Maruta T; Tamoi M; Shigeoka S
    Biosci Biotechnol Biochem; 2012; 76(11):2075-81. PubMed ID: 23132568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.
    Lopato S; Waigmann E; Barta A
    Plant Cell; 1996 Dec; 8(12):2255-64. PubMed ID: 8989882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis.
    Fang Y; Hearn S; Spector DL
    Mol Biol Cell; 2004 Jun; 15(6):2664-73. PubMed ID: 15034145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Distribution and Interaction of the Arabidopsis SRSF1 Subfamily Splicing Factors.
    Stankovic N; Schloesser M; Joris M; Sauvage E; Hanikenne M; Motte P
    Plant Physiol; 2016 Feb; 170(2):1000-13. PubMed ID: 26697894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus.
    Launholt D; Merkle T; Houben A; Schulz A; Grasser KD
    Plant Cell; 2006 Nov; 18(11):2904-18. PubMed ID: 17114349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP, phosphorylation and transcription regulate the mobility of plant splicing factors.
    Ali GS; Reddy AS
    J Cell Sci; 2006 Sep; 119(Pt 17):3527-38. PubMed ID: 16895966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel splicing regulator shares a nuclear import pathway with SR proteins.
    Lai MC; Kuo HW; Chang WC; Tarn WY
    EMBO J; 2003 Mar; 22(6):1359-69. PubMed ID: 12628928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism.
    de la Fuente van Bentem S; Anrather D; Roitinger E; Djamei A; Hufnagl T; Barta A; Csaszar E; Dohnal I; Lecourieux D; Hirt H
    Nucleic Acids Res; 2006; 34(11):3267-78. PubMed ID: 16807317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein.
    Golovkin M; Reddy AS
    J Biol Chem; 1999 Dec; 274(51):36428-38. PubMed ID: 10593939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function.
    Keshwani MM; Aubol BE; Fattet L; Ma CT; Qiu J; Jennings PA; Fu XD; Adams JA
    Biochem J; 2015 Mar; 466(2):311-22. PubMed ID: 25529026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses.
    Reddy AS; Shad Ali G
    Wiley Interdiscip Rev RNA; 2011; 2(6):875-89. PubMed ID: 21766458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear export and retention signals in the RS domain of SR proteins.
    Cazalla D; Zhu J; Manche L; Huber E; Krainer AR; Cáceres JF
    Mol Cell Biol; 2002 Oct; 22(19):6871-82. PubMed ID: 12215544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual mechanism controls nuclear localization in the atypical basic-helix-loop-helix protein PAR1 of Arabidopsis thaliana.
    Galstyan A; Bou-Torrent J; Roig-Villanova I; Martínez-García JF
    Mol Plant; 2012 May; 5(3):669-77. PubMed ID: 22311779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei.
    Lorković ZJ; Hilscher J; Barta A
    Exp Cell Res; 2008 Oct; 314(17):3175-86. PubMed ID: 18674533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants.
    Forment J; Naranjo MA; Roldán M; Serrano R; Vicente O
    Plant J; 2002 Jun; 30(5):511-9. PubMed ID: 12047626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles.
    Dye BT; Patton JG
    Exp Cell Res; 2001 Feb; 263(1):131-44. PubMed ID: 11161712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells.
    Lorković ZJ; Hilscher J; Barta A
    Mol Biol Cell; 2004 Jul; 15(7):3233-43. PubMed ID: 15133128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.