BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 17114398)

  • 21. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.
    Des Marteaux LE; Khazraeenia S; Yerushalmi GY; Donini A; Li NG; Sinclair BJ
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Feb; 216():28-33. PubMed ID: 29146150
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Durant AC; Chasiotis H; Misyura L; Donini A
    J Exp Biol; 2017 Feb; 220(Pt 4):588-596. PubMed ID: 27885043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis).
    Tipsmark CK; Madsen SS; Borski RJ
    J Exp Zool A Comp Exp Biol; 2004 Dec; 301(12):979-91. PubMed ID: 15562450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti.
    Jonusaite S; Kelly SP; Donini A
    J Comp Physiol B; 2016 Jul; 186(5):589-602. PubMed ID: 27004691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the septate junction protein gliotactin in the mosquito
    Jonusaite S; Kelly SP; Donini A
    J Exp Biol; 2017 Jul; 220(Pt 13):2354-2363. PubMed ID: 28432154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The gastric caecum of larval
    D'Silva NM; O'Donnell MJ
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29217627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Larval anopheline mosquito recta exhibit a dramatic change in localization patterns of ion transport proteins in response to shifting salinity: a comparison between anopheline and culicine larvae.
    Smith KE; VanEkeris LA; Okech BA; Harvey WR; Linser PJ
    J Exp Biol; 2008 Oct; 211(Pt 19):3067-76. PubMed ID: 18805805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance.
    Farrell S; Dates J; Ramirez N; Hausknecht-Buss H; Kolosov D
    J Exp Biol; 2024 Feb; 227(3):. PubMed ID: 38197515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allatostatin A-like immunoreactivity in the nervous system and gut of the larval midge Chironomus riparius: modulation of hindgut motility, rectal K+ transport and implications for exposure to salinity.
    Robertson L; Chasiotis H; Galperin V; Donini A
    J Exp Biol; 2014 Nov; 217(Pt 21):3815-22. PubMed ID: 25214489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential adjustment in gill Na+/K+- and V-ATPase activities and transporter mRNA expression during osmoregulatory acclimation in the cinnamon shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae).
    Faleiros RO; Goldman MH; Furriel RP; McNamara JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3894-905. PubMed ID: 21037069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mosquito entomoglyceroporin,
    Misyura L; Yerushalmi GY; Donini A
    J Exp Biol; 2017 Oct; 220(Pt 19):3536-3544. PubMed ID: 28760831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of the V-ATPase A and c subunit cDNAs from mosquito midgut and Malpighian tubules.
    Gill SS; Chu PB; Smethurst P; Pietrantonio PV; Ross LS
    Arch Insect Biochem Physiol; 1998; 37(1):80-90. PubMed ID: 9397516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein kinase A-dependent and -independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti.
    Tiburcy F; Beyenbach KW; Wieczorek H
    J Exp Biol; 2013 Mar; 216(Pt 5):881-91. PubMed ID: 23197085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Aedes aegypti (Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation.
    Durant AC; Donini A
    Sci Rep; 2019 Dec; 9(1):19028. PubMed ID: 31836747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The key role of the H+ V-ATPase in acid-base balance and Na+ transport processes in frog skin.
    Ehrenfeld J; Klein U
    J Exp Biol; 1997 Jan; 200(Pt 2):247-56. PubMed ID: 9050232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti.
    Piermarini PM; Weihrauch D; Meyer H; Huss M; Beyenbach KW
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F730-50. PubMed ID: 19193723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization and role of inward rectifier K(+) channels in Malpighian tubules of the yellow fever mosquito Aedes aegypti.
    Piermarini PM; Dunemann SM; Rouhier MF; Calkins TL; Raphemot R; Denton JS; Hine RM; Beyenbach KW
    Insect Biochem Mol Biol; 2015 Dec; 67():59-73. PubMed ID: 26079629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dependence of electrical transport pathways in Malpighian tubules on ATP.
    Wu DS; Beyenbach KW
    J Exp Biol; 2003 Jan; 206(Pt 2):233-43. PubMed ID: 12477894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes.
    Boudko DY; Moroz LL; Linser PJ; Trimarchi JR; Smith PJ; Harvey WR
    J Exp Biol; 2001 Feb; 204(Pt 4):691-9. PubMed ID: 11171351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.