These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17114849)

  • 61. Absence of the mitochondrial A7237T mutation in Parkinson's disease.
    Lücking CB; Kösel S; Mehraein P; Graeber MB
    Biochem Biophys Res Commun; 1995 Jun; 211(2):700-4. PubMed ID: 7794285
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mitochondrial respiratory chain function in multiple system atrophy.
    Gu M; Gash MT; Cooper JM; Wenning GK; Daniel SE; Quinn NP; Marsden CD; Schapira AH
    Mov Disord; 1997 May; 12(3):418-22. PubMed ID: 9159739
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mitochondrial dysfunction in neurodegenerative disorders.
    Schapira AH
    Biochim Biophys Acta; 1998 Aug; 1366(1-2):225-33. PubMed ID: 9714816
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flow cytometric evaluation of defects of the mitochondrial respiratory chain.
    Williams AJ; Coakley JC; Christodoulou J
    J Child Neurol; 1999 Aug; 14(8):518-23. PubMed ID: 10456762
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implications in Parkinson's disease.
    Jana S; Maiti AK; Bagh MB; Banerjee K; Das A; Roy A; Chakrabarti S
    Brain Res; 2007 Mar; 1139():195-200. PubMed ID: 17291463
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and cardiogenic shock.
    Protti A; Fortunato F; Artoni A; Lecchi A; Motta G; Mistraletti G; Novembrino C; Comi GP; Gattinoni L
    Crit Care; 2015 Feb; 19(1):39. PubMed ID: 25757508
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synergistic inhibition of respiration in brain mitochondria by nitric oxide and dihydroxyphenylacetic acid (DOPAC). Implications for Parkinson's disease.
    Nunes C; Almeida L; Laranjinha J
    Neurochem Int; 2005 Aug; 47(3):173-82. PubMed ID: 15893407
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease.
    Fiskum G; Starkov A; Polster BM; Chinopoulos C
    Ann N Y Acad Sci; 2003 Jun; 991():111-9. PubMed ID: 12846980
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mitochondrial oxidative phosphorylation defects in Parkinson's disease.
    Shoffner JM; Watts RL; Juncos JL; Torroni A; Wallace DC
    Ann Neurol; 1991 Sep; 30(3):332-9. PubMed ID: 1952821
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ceramide and the mitochondrial respiratory chain.
    Kogot-Levin A; Saada A
    Biochimie; 2014 May; 100():88-94. PubMed ID: 23933096
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Parkinson's Disease and Impairment in Mitochondrial Metabolism: A Pathognomic Signature.
    Das B; Dash SP; Mohanty S; Patel P
    Adv Exp Med Biol; 2021; 1286():65-76. PubMed ID: 33725345
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin.
    Anderson A; Bowman A; Boulton SJ; Manning P; Birch-Machin MA
    Redox Biol; 2014; 2():1016-22. PubMed ID: 25460738
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mitochondrial control of cell bioenergetics in Parkinson's disease.
    Requejo-Aguilar R; Bolaños JP
    Free Radic Biol Med; 2016 Nov; 100():123-137. PubMed ID: 27091692
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson's disease.
    Arai T; Fukae J; Hatano T; Kubo S; Ohtsubo T; Nakabeppu Y; Mori H; Mizuno Y; Hattori N
    Acta Neuropathol; 2006 Aug; 112(2):139-45. PubMed ID: 16773329
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease.
    Tretter L; Sipos I; Adam-Vizi V
    Neurochem Res; 2004 Mar; 29(3):569-77. PubMed ID: 15038604
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cytoplasmic transfer of platelet mtDNA from elderly patients with Parkinson's disease to mtDNA-less HeLa cells restores complete mitochondrial respiratory function.
    Aomi Y; Chen CS; Nakada K; Ito S; Isobe K; Murakami H; Kuno SY; Tawata M; Matsuoka R; Mizusawa H; Hayashi JI
    Biochem Biophys Res Commun; 2001 Jan; 280(1):265-73. PubMed ID: 11162509
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity.
    Hastie R; Lappas M
    Placenta; 2014 Sep; 35(9):673-83. PubMed ID: 25002362
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reduced NADH coenzyme Q dehydrogenase activity in platelets of Parkinson's disease, but not Parkinson plus patients, from an Indian population.
    Varghese M; Pandey M; Samanta A; Gangopadhyay PK; Mohanakumar KP
    J Neurol Sci; 2009 Apr; 279(1-2):39-42. PubMed ID: 19176229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.