These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 17114898)
1. Topological predictions for integral membrane permeases of the phosphoenolpyruvate:sugar phosphotransferase system. Nguyen TX; Yen MR; Barabote RD; Saier MH J Mol Microbiol Biotechnol; 2006; 11(6):345-60. PubMed ID: 17114898 [TBL] [Abstract][Full Text] [Related]
2. Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family. Hvorup R; Chang AB; Saier MH J Mol Microbiol Biotechnol; 2003; 6(3-4):191-205. PubMed ID: 15153772 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. Reizer A; Pao GM; Saier MH J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454 [TBL] [Abstract][Full Text] [Related]
4. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Aboulwafa M; Hvorup R; Saier MH Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional structures of protein-protein complexes in the E. coli PTS. Peterkofsky A; Wang G; Garrett DS; Lee BR; Seok YJ; Clore GM J Mol Microbiol Biotechnol; 2001 Jul; 3(3):347-54. PubMed ID: 11361064 [TBL] [Abstract][Full Text] [Related]
6. Flexible programs for the prediction of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins. Le T; Tseng TT; Saier MH Mol Membr Biol; 1999; 16(2):173-9. PubMed ID: 10417982 [TBL] [Abstract][Full Text] [Related]
7. Biochemical characterization of phosphoryl transfer involving HPr of the phosphoenolpyruvate-dependent phosphotransferase system in Treponema denticola, an organism that lacks PTS permeases. Gonzalez CF; Stonestrom AJ; Lorca GL; Saier MH Biochemistry; 2005 Jan; 44(2):598-608. PubMed ID: 15641785 [TBL] [Abstract][Full Text] [Related]
8. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons. Saier MH; Yamada M; Erni B; Suda K; Lengeler J; Ebner R; Argos P; Rak B; Schnetz K; Lee CA FASEB J; 1988 Mar; 2(3):199-208. PubMed ID: 2832233 [TBL] [Abstract][Full Text] [Related]
9. Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. Wu LF; Tomich JM; Saier MH J Mol Biol; 1990 Jun; 213(4):687-703. PubMed ID: 2193161 [TBL] [Abstract][Full Text] [Related]
10. The different functions of BglF, the E. coli beta-glucoside permease and sensor of the bgl system, have different structural requirements. Chen Q; Amster-Choder O Biochemistry; 1998 Dec; 37(48):17040-7. PubMed ID: 9836599 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of phosphotransferase system enzymes PtxB (IIB(Asc)) and PtxA (IIA(Asc)) from Streptococcus mutans. Lei J; Li LF; Su XD J Mol Biol; 2009 Feb; 386(2):465-75. PubMed ID: 19135450 [TBL] [Abstract][Full Text] [Related]
12. The complete phosphotransferase system in Escherichia coli. Tchieu JH; Norris V; Edwards JS; Saier MH J Mol Microbiol Biotechnol; 2001 Jul; 3(3):329-46. PubMed ID: 11361063 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the cryptic mannitol-specific phosphotransferase enzyme IIA CmtB from Escherichia coli. Yu C; Li Y; Xia B; Jin C Biochem Biophys Res Commun; 2007 Nov; 362(4):1001-6. PubMed ID: 17803963 [TBL] [Abstract][Full Text] [Related]
14. The functional importance of structural differences between the mannitol-specific IIAmannitol and the regulatory IIAnitrogen. van Montfort RL; Dijkstra BW Protein Sci; 1998 Oct; 7(10):2210-6. PubMed ID: 9792109 [TBL] [Abstract][Full Text] [Related]
15. Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. Charrier V; Deutscher J; Galinier A; Martin-Verstraete I Biochemistry; 1997 Feb; 36(5):1163-72. PubMed ID: 9033408 [TBL] [Abstract][Full Text] [Related]
16. The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man). Pelletier M; Lortie LA; Frenette M; Vadeboncoeur C Biochemistry; 1998 Feb; 37(6):1604-12. PubMed ID: 9484231 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Tangney M; Mitchell WJ Appl Microbiol Biotechnol; 2007 Feb; 74(2):398-405. PubMed ID: 17096120 [TBL] [Abstract][Full Text] [Related]
18. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases. Bouma CL; Roseman S J Biol Chem; 1996 Dec; 271(52):33457-67. PubMed ID: 8969209 [TBL] [Abstract][Full Text] [Related]
19. Regulation of galactoside transport by the PTS. Kuroda M; Wilson TH; Tsuchiya T J Mol Microbiol Biotechnol; 2001 Jul; 3(3):381-4. PubMed ID: 11361068 [TBL] [Abstract][Full Text] [Related]
20. Engineering transport protein function: theoretical and technical considerations using the sugar-transporting phosphotransferase system of Escherichia coli as a model system. SoberĂ³n X; Saier MH J Mol Microbiol Biotechnol; 2006; 11(6):302-7. PubMed ID: 17114894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]