These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17114898)

  • 21. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships.
    Kuan J; Saier MH
    Crit Rev Biochem Mol Biol; 1993; 28(3):209-33. PubMed ID: 8325039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications.
    Saurin W; Dassa E
    Protein Sci; 1994 Feb; 3(2):325-44. PubMed ID: 8003968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of Staphylococcus aureus 6-P-beta-galactosidase and GFP as fusion partners for lactose-specific IIC domain from Staphylococcus aureus.
    Kowolik CM; Hengstenberg W
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):395-400. PubMed ID: 11361070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2D and 3D crystallization of the wild-type IIC domain of the glucose PTS transporter from Escherichia coli.
    Kalbermatter D; Jeckelmann JM; Chiu PL; Ucurum Z; Walz T; Fotiadis D
    J Struct Biol; 2015 Sep; 191(3):376-80. PubMed ID: 26260226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain shuffling during evolution of the proteins of the bacterial phosphotransferase system.
    Saier MH; Reizer J
    Res Microbiol; 1990; 141(9):1033-8. PubMed ID: 2092356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural insight into the PTS sugar transporter EIIC.
    McCoy JG; Levin EJ; Zhou M
    Biochim Biophys Acta; 2015 Mar; 1850(3):577-85. PubMed ID: 24657490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron crystallography reveals that substrate release from the PTS IIC glucose transporter is coupled to a subtle conformational change.
    Kalbermatter D; Chiu PL; Jeckelmann JM; Ucurum Z; Walz T; Fotiadis D
    J Struct Biol; 2017 Jul; 199(1):39-45. PubMed ID: 28522226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modular multidomain phosphoryl transfer proteins of bacteria.
    Reizer J; Saier MH
    Curr Opin Struct Biol; 1997 Jun; 7(3):407-15. PubMed ID: 9204284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recurrence of a binding motif?
    Swindells MB; Orengo CA; Jones DT; Pearl LH; Thornton JM
    Nature; 1993 Mar; 362(6418):299. PubMed ID: 8384322
    [No Abstract]   [Full Text] [Related]  

  • 30. The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases.
    van Montfort RL; Pijning T; Kalk KH; Reizer J; Saier MH; Thunnissen MM; Robillard GT; Dijkstra BW
    Structure; 1997 Feb; 5(2):217-25. PubMed ID: 9032081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system.
    Aboulwafa M; Saier MH
    Microbiology (Reading); 2013 Nov; 159(Pt 11):2213-2224. PubMed ID: 23985145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The LysE Superfamily of Transport Proteins Involved in Cell Physiology and Pathogenesis.
    Tsu BV; Saier MH
    PLoS One; 2015; 10(10):e0137184. PubMed ID: 26474485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The major facilitator superfamily (MFS) revisited.
    Reddy VS; Shlykov MA; Castillo R; Sun EI; Saier MH
    FEBS J; 2012 Jun; 279(11):2022-35. PubMed ID: 22458847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily.
    Hvorup RN; Winnen B; Chang AB; Jiang Y; Zhou XF; Saier MH
    Eur J Biochem; 2003 Mar; 270(5):799-813. PubMed ID: 12603313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism inĀ EIIC.
    Lee J; Ren Z; Zhou M; Im W
    Biophys J; 2017 Jun; 112(11):2249-2252. PubMed ID: 28506526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial proteins with N-terminal leader sequences resembling mitochondrial targeting sequences of eukaryotes.
    Saier MH; Yamada M; Suda K; Erni B; Rak B; Lengeler J; Stewart GC; Waygood EB; Rapoport G
    Biochimie; 1988 Dec; 70(12):1743-8. PubMed ID: 3150678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes.
    Wang SC; Davejan P; Hendargo KJ; Javadi-Razaz I; Chou A; Yee DC; Ghazi F; Lam KJK; Conn AM; Madrigal A; Medrano-Soto A; Saier MH
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183277. PubMed ID: 32205149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The twisted relation between Pnu and SWEET transporters.
    Jaehme M; Guskov A; Slotboom DJ
    Trends Biochem Sci; 2015 Apr; 40(4):183-8. PubMed ID: 25757400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery and Characterization of the Phospholemman/SIMP/Viroporin Superfamily.
    Tyler D; Hendargo KJ; Medrano-Soto A; Saier MH
    Microb Physiol; 2022; 32(3-4):83-94. PubMed ID: 35152214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The drug/metabolite transporter superfamily.
    Jack DL; Yang NM; Saier MH
    Eur J Biochem; 2001 Jul; 268(13):3620-39. PubMed ID: 11432728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.