These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17114942)

  • 41. Crystallization of the glmS ribozyme-riboswitch.
    Klein DJ; Ferré-D'Amaré AR
    Methods Mol Biol; 2009; 540():129-39. PubMed ID: 19381557
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme.
    Klein DJ; Wilkinson SR; Been MD; Ferré-D'Amaré AR
    J Mol Biol; 2007 Oct; 373(1):178-89. PubMed ID: 17804015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A CRISPR/Cas9-riboswitch-Based Method for Downregulation of Gene Expression in
    Lander N; Cruz-Bustos T; Docampo R
    Front Cell Infect Microbiol; 2020; 10():68. PubMed ID: 32175288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assay for glucosamine 6-phosphate using a ligand-activated ribozyme with fluorescence resonance energy transfer or CE-laser-induced fluorescence detection.
    Furchak JR; Yang P; Jennings C; Walter NG; Kennedy RT
    Anal Chem; 2008 Nov; 80(21):8195-201. PubMed ID: 18842060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme.
    Posakony JJ; Ferré-D'Amaré AR
    J Org Chem; 2013 May; 78(10):4730-43. PubMed ID: 23578404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The glmS ribozyme cofactor is a general acid-base catalyst.
    Viladoms J; Fedor MJ
    J Am Chem Soc; 2012 Nov; 134(46):19043-9. PubMed ID: 23113700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence.
    Lau MW; Ferré-D'Amaré AR
    Nat Chem Biol; 2013 Dec; 9(12):805-10. PubMed ID: 24096303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development.
    Traykovska M; Popova KB; Penchovsky R
    ACS Synth Biol; 2021 Nov; 10(11):3167-3176. PubMed ID: 34734706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolite-binding ribozymes.
    Ramesh A; Winkler WC
    Biochim Biophys Acta; 2014 Oct; 1839(10):989-994. PubMed ID: 24769284
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo.
    Watson PY; Fedor MJ
    Nat Struct Mol Biol; 2011 Mar; 18(3):359-63. PubMed ID: 21317896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS ribozyme.
    Andreasson JOL; Savinov A; Block SM; Greenleaf WJ
    Nat Commun; 2020 Apr; 11(1):1663. PubMed ID: 32245964
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of metabolite-riboswitch interactions using nucleotide analog interference mapping and suppression.
    Soukup JK; Soukup GA
    Methods Mol Biol; 2009; 540():193-206. PubMed ID: 19381561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-throughput-compatible assay for glmS riboswitch metabolite dependence.
    Mayer G; Famulok M
    Chembiochem; 2006 Apr; 7(4):602-4. PubMed ID: 16485317
    [No Abstract]   [Full Text] [Related]  

  • 54. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control.
    Barrick JE; Corbino KA; Winkler WC; Nahvi A; Mandal M; Collins J; Lee M; Roth A; Sudarsan N; Jona I; Wickiser JK; Breaker RR
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6421-6. PubMed ID: 15096624
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A cell-based ribozyme reporter system employing a chromosomally-integrated 5' exonuclease gene.
    Aroonsri A; Kongsee J; Gunawan JD; Aubry DA; Shaw PJ
    BMC Mol Cell Biol; 2021 Mar; 22(1):20. PubMed ID: 33726662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae.
    Lee SW; Oh MK
    Metab Eng; 2015 Mar; 28():143-150. PubMed ID: 25596509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ring-opening mechanism revealed by crystal structures of NagB and its ES intermediate complex.
    Liu C; Li D; Liang YH; Li LF; Su XD
    J Mol Biol; 2008 May; 379(1):73-81. PubMed ID: 18436239
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Riboswitch-based Inducible Gene Expression System for Trypanosoma brucei.
    Cruz-Bustos T; Ramakrishnan S; Cordeiro CD; Ahmed MA; Docampo R
    J Eukaryot Microbiol; 2018 May; 65(3):412-421. PubMed ID: 29265590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural features of metabolite-sensing riboswitches.
    Wakeman CA; Winkler WC; Dann CE
    Trends Biochem Sci; 2007 Sep; 32(9):415-24. PubMed ID: 17764952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aptazyme-based riboswitches and logic gates in mammalian cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2015; 1316():141-8. PubMed ID: 25967059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.