These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 17114942)
41. Crystallization of the glmS ribozyme-riboswitch. Klein DJ; Ferré-D'Amaré AR Methods Mol Biol; 2009; 540():129-39. PubMed ID: 19381557 [TBL] [Abstract][Full Text] [Related]
42. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. Klein DJ; Wilkinson SR; Been MD; Ferré-D'Amaré AR J Mol Biol; 2007 Oct; 373(1):178-89. PubMed ID: 17804015 [TBL] [Abstract][Full Text] [Related]
43. A CRISPR/Cas9-riboswitch-Based Method for Downregulation of Gene Expression in Lander N; Cruz-Bustos T; Docampo R Front Cell Infect Microbiol; 2020; 10():68. PubMed ID: 32175288 [TBL] [Abstract][Full Text] [Related]
44. Assay for glucosamine 6-phosphate using a ligand-activated ribozyme with fluorescence resonance energy transfer or CE-laser-induced fluorescence detection. Furchak JR; Yang P; Jennings C; Walter NG; Kennedy RT Anal Chem; 2008 Nov; 80(21):8195-201. PubMed ID: 18842060 [TBL] [Abstract][Full Text] [Related]
45. Glucosamine and glucosamine-6-phosphate derivatives: catalytic cofactor analogues for the glmS ribozyme. Posakony JJ; Ferré-D'Amaré AR J Org Chem; 2013 May; 78(10):4730-43. PubMed ID: 23578404 [TBL] [Abstract][Full Text] [Related]
46. The glmS ribozyme cofactor is a general acid-base catalyst. Viladoms J; Fedor MJ J Am Chem Soc; 2012 Nov; 134(46):19043-9. PubMed ID: 23113700 [TBL] [Abstract][Full Text] [Related]
47. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Lau MW; Ferré-D'Amaré AR Nat Chem Biol; 2013 Dec; 9(12):805-10. PubMed ID: 24096303 [TBL] [Abstract][Full Text] [Related]
48. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development. Traykovska M; Popova KB; Penchovsky R ACS Synth Biol; 2021 Nov; 10(11):3167-3176. PubMed ID: 34734706 [TBL] [Abstract][Full Text] [Related]
54. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Barrick JE; Corbino KA; Winkler WC; Nahvi A; Mandal M; Collins J; Lee M; Roth A; Sudarsan N; Jona I; Wickiser JK; Breaker RR Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6421-6. PubMed ID: 15096624 [TBL] [Abstract][Full Text] [Related]
55. A cell-based ribozyme reporter system employing a chromosomally-integrated 5' exonuclease gene. Aroonsri A; Kongsee J; Gunawan JD; Aubry DA; Shaw PJ BMC Mol Cell Biol; 2021 Mar; 22(1):20. PubMed ID: 33726662 [TBL] [Abstract][Full Text] [Related]
56. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Lee SW; Oh MK Metab Eng; 2015 Mar; 28():143-150. PubMed ID: 25596509 [TBL] [Abstract][Full Text] [Related]
57. Ring-opening mechanism revealed by crystal structures of NagB and its ES intermediate complex. Liu C; Li D; Liang YH; Li LF; Su XD J Mol Biol; 2008 May; 379(1):73-81. PubMed ID: 18436239 [TBL] [Abstract][Full Text] [Related]
58. A Riboswitch-based Inducible Gene Expression System for Trypanosoma brucei. Cruz-Bustos T; Ramakrishnan S; Cordeiro CD; Ahmed MA; Docampo R J Eukaryot Microbiol; 2018 May; 65(3):412-421. PubMed ID: 29265590 [TBL] [Abstract][Full Text] [Related]
59. Structural features of metabolite-sensing riboswitches. Wakeman CA; Winkler WC; Dann CE Trends Biochem Sci; 2007 Sep; 32(9):415-24. PubMed ID: 17764952 [TBL] [Abstract][Full Text] [Related]
60. Aptazyme-based riboswitches and logic gates in mammalian cells. Nomura Y; Yokobayashi Y Methods Mol Biol; 2015; 1316():141-8. PubMed ID: 25967059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]