These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17114942)

  • 61. Allosteric Modulation of the Faecalibacterium prausnitzii Hepatitis Delta Virus-like Ribozyme by Glucosamine 6-Phosphate: The Substrate of the Adjacent Gene Product.
    Passalacqua LFM; Jimenez RM; Fong JY; Lupták A
    Biochemistry; 2017 Nov; 56(45):6006-6014. PubMed ID: 29045794
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Essential role of an active-site guanine in glmS ribozyme catalysis.
    Klein DJ; Been MD; Ferré-D'Amaré AR
    J Am Chem Soc; 2007 Dec; 129(48):14858-9. PubMed ID: 17990888
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In vitro selection of glmS ribozymes.
    Link KH; Breaker RR
    Methods Mol Biol; 2009; 540():349-64. PubMed ID: 19381572
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Activation of the glmS Ribozyme Nucleophile via Overdetermined Hydrogen Bonding.
    Bingaman JL; Gonzalez IY; Wang B; Bevilacqua PC
    Biochemistry; 2017 Aug; 56(33):4313-4317. PubMed ID: 28787138
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology.
    Jenne A; Hartig JS; Piganeau N; Tauer A; Samarsky DA; Green MR; Davies J; Famulok M
    Nat Biotechnol; 2001 Jan; 19(1):56-61. PubMed ID: 11135553
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The 3'-untranslated region of mRNAs as a site for ribozyme cleavage-dependent processing and control in bacteria.
    Felletti M; Bieber A; Hartig JS
    RNA Biol; 2017 Nov; 14(11):1522-1533. PubMed ID: 27690736
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay.
    Chinnappan R; Dubé A; Lemay JF; Lafontaine DA
    Nucleic Acids Res; 2013 May; 41(10):e106. PubMed ID: 23525464
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Novel targets for antibiotics discovery: riboswitches].
    Jia DF; Jia DF; Jia DF
    Yao Xue Xue Bao; 2013 Sep; 48(9):1361-8. PubMed ID: 24358767
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An in vivo high-throughput screening for riboswitch ligands using a reverse reporter gene system.
    Kirchner M; Schorpp K; Hadian K; Schneider S
    Sci Rep; 2017 Aug; 7(1):7732. PubMed ID: 28798404
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
    Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU
    Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide.
    Perkins TA; Wolf DE; Goodchild J
    Biochemistry; 1996 Dec; 35(50):16370-7. PubMed ID: 8973213
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fluorescence anisotropy: analysis of tRNA binding to the T box riboswitch antiterminator RNA.
    Zhou S; Anupam R; Hines JV
    Methods Mol Biol; 2015; 1240():143-52. PubMed ID: 25352143
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fluorescence assays for monitoring RNA-ligand interactions and riboswitch-targeted drug discovery screening.
    Liu J; Zeng C; Zhou S; Means JA; Hines JV
    Methods Enzymol; 2015; 550():363-83. PubMed ID: 25605395
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Riboswitches: small-molecule recognition by gene regulatory RNAs.
    Edwards TE; Klein DJ; Ferré-D'Amaré AR
    Curr Opin Struct Biol; 2007 Jun; 17(3):273-9. PubMed ID: 17574837
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterization of the glmS Ribozymes from Listeria Monocytogenes and Clostridium Difficile.
    Esser A; Mayer G
    Chemistry; 2023 Jan; 29(3):e202202376. PubMed ID: 36194523
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Riboswitch-based antibacterial drug discovery using high-throughput screening methods.
    Penchovsky R; Stoilova CC
    Expert Opin Drug Discov; 2013 Jan; 8(1):65-82. PubMed ID: 23163232
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glycols modulate terminator stem stability and ligand-dependency of a glycine riboswitch.
    Hamachi K; Hayashi H; Shimamura M; Yamaji Y; Kaneko A; Fujisawa A; Umehara T; Tamura K
    Biosystems; 2013 Aug; 113(2):59-65. PubMed ID: 23721735
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Ribozyme riboswitch based gene expression regulation systems for gene therapy applications: progress and challenges].
    Feng JX; Wang JW; Lin JS; Diao Y
    Yao Xue Xue Bao; 2014 Nov; 49(11):1504-11. PubMed ID: 25757274
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparison of vanadate to a 2'-5' linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization.
    Torelli AT; Krucinska J; Wedekind JE
    RNA; 2007 Jul; 13(7):1052-70. PubMed ID: 17488874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.