These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 17115706)
1. Evolution of multi-enzyme complexes: the case of tryptophan synthase. Leopoldseder S; Hettwer S; Sterner R Biochemistry; 2006 Nov; 45(47):14111-9. PubMed ID: 17115706 [TBL] [Abstract][Full Text] [Related]
2. Ligand-induced formation of a transient tryptophan synthase complex with αββ subunit stoichiometry. Ehrmann A; Richter K; Busch F; Reimann J; Albers SV; Sterner R Biochemistry; 2010 Dec; 49(51):10842-53. PubMed ID: 21090805 [TBL] [Abstract][Full Text] [Related]
3. Modelling the evolution of the archeal tryptophan synthase. Merkl R BMC Evol Biol; 2007 Apr; 7():59. PubMed ID: 17425797 [TBL] [Abstract][Full Text] [Related]
4. The tryptophan synthase β-subunit paralogs TrpB1 and TrpB2 in Thermococcus kodakarensis are both involved in tryptophan biosynthesis and indole salvage. Hiyama T; Sato T; Imanaka T; Atomi H FEBS J; 2014 Jul; 281(14):3113-25. PubMed ID: 24835339 [TBL] [Abstract][Full Text] [Related]
5. A novel tryptophan synthase beta-subunit from the hyperthermophile Thermotoga maritima. Quaternary structure, steady-state kinetics, and putative physiological role. Hettwer S; Sterner R J Biol Chem; 2002 Mar; 277(10):8194-201. PubMed ID: 11756459 [TBL] [Abstract][Full Text] [Related]
6. Mutational scanning of a hairpin loop in the tryptophan synthase beta-subunit implicated in allostery and substrate channeling. Rondard P; Bedouelle H Biol Chem; 2000 Dec; 381(12):1185-93. PubMed ID: 11209753 [TBL] [Abstract][Full Text] [Related]
7. Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Michalska K; Wellington S; Maltseva N; Jedrzejczak R; Selem-Mojica N; Rosas-Becerra LR; Barona-Gómez F; Hung DT; Joachimiak A Protein Sci; 2021 Sep; 30(9):1904-1918. PubMed ID: 34107106 [TBL] [Abstract][Full Text] [Related]
8. Biochemical analysis of a thermostable tryptophan synthase from a hyperthermophilic archaeon. Tang XF; Ezaki S; Atomi H; Imanaka T Eur J Biochem; 2000 Nov; 267(21):6369-77. PubMed ID: 11029579 [TBL] [Abstract][Full Text] [Related]
9. Directed evolution of (βα)(8)-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase α-subunit. Evran S; Telefoncu A; Sterner R Protein Eng Des Sel; 2012 Jun; 25(6):285-93. PubMed ID: 22490958 [TBL] [Abstract][Full Text] [Related]
10. Conformational changes in the alpha-subunit coupled to binding of the beta 2-subunit of tryptophan synthase from Escherichia coli: crystal structure of the tryptophan synthase alpha-subunit alone. Nishio K; Morimoto Y; Ishizuka M; Ogasahara K; Tsukihara T; Yutani K Biochemistry; 2005 Feb; 44(4):1184-92. PubMed ID: 15667212 [TBL] [Abstract][Full Text] [Related]
12. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus. Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Scirè A; Rossi M; Tanfani F; Moracci M Biochimie; 2006 Jul; 88(7):807-17. PubMed ID: 16494988 [TBL] [Abstract][Full Text] [Related]
14. On the role of helix 0 of the tryptophan synthetase alpha chain of Escherichia coli. Yee MC; Horn V; Yanofsky C J Biol Chem; 1996 Jun; 271(25):14754-63. PubMed ID: 8662916 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. Zhang R; Wang B; Ouyang J; Li J; Wang Y J Integr Plant Biol; 2008 Sep; 50(9):1070-7. PubMed ID: 18844775 [TBL] [Abstract][Full Text] [Related]
16. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. Fehlner-Gardiner C; Roshick C; Carlson JH; Hughes S; Belland RJ; Caldwell HD; McClarty G J Biol Chem; 2002 Jul; 277(30):26893-903. PubMed ID: 12011099 [TBL] [Abstract][Full Text] [Related]
17. Two unique membrane-bound AAA proteins from Sulfolobus solfataricus. Serek-Heuberger J; Hobel CF; Dunin-Horkawicz S; Rockel B; Martin J; Lupas AN Biochem Soc Trans; 2009 Feb; 37(Pt 1):118-22. PubMed ID: 19143614 [TBL] [Abstract][Full Text] [Related]
18. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Walter P; Klein F; Lorentzen E; Ilchmann A; Klug G; Evguenieva-Hackenberg E Mol Microbiol; 2006 Nov; 62(4):1076-89. PubMed ID: 17078816 [TBL] [Abstract][Full Text] [Related]
19. Analysis of allosteric communication in a multienzyme complex by ancestral sequence reconstruction. Schupfner M; Straub K; Busch F; Merkl R; Sterner R Proc Natl Acad Sci U S A; 2020 Jan; 117(1):346-354. PubMed ID: 31871208 [TBL] [Abstract][Full Text] [Related]
20. Tryptophan Operon Diversity Reveals Evolutionary Trends among Geographically Disparate Chlamydia trachomatis Ocular and Urogenital Strains Affecting Tryptophan Repressor and Synthase Function. Bommana S; Somboonna N; Richards G; Tarazkar M; Dean D mBio; 2021 May; 12(3):. PubMed ID: 33975934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]