BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1297 related articles for article (PubMed ID: 17115744)

  • 1. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2.
    Lantto P; Kangasvieri S; Vaara J
    J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and proton shielding tensors in methyl halides.
    Kantola AM; Lantto P; Vaara J; Jokisaari J
    Phys Chem Chem Phys; 2010 Mar; 12(11):2679-92. PubMed ID: 20200746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules.
    Pennanen TO; Vaara J
    J Chem Phys; 2005 Nov; 123(17):174102. PubMed ID: 16375512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study.
    Bast R; Schwerdtfeger P; Saue T
    J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects.
    Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M
    Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study.
    Pecul M; Saue T; Ruud K; Rizzo A
    J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution electron spin resonance spectroscopy of XeF* in solid argon. The hyperfine structure constants as a probe of relativistic effects in the chemical bonding properties of a heavy noble gas atom.
    Misochko EY; Akimov AV; Goldschleger IU; Tyurin DA; Laikov DN
    J Chem Phys; 2005 Jan; 122(3):34503. PubMed ID: 15740205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The appearance of an interval of energies that contain the whole diamagnetic contribution to NMR magnetic shieldings.
    Maldonado A; Aucar GA
    J Chem Phys; 2007 Oct; 127(15):154115. PubMed ID: 17949140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO.
    Rössler N; Kotsis K; Staemmler V
    Phys Chem Chem Phys; 2006 Feb; 8(6):697-706. PubMed ID: 16482309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-orbit and electron correlation effects on the structure of EF3 (E = I, At, and element 117).
    Kim H; Choi YJ; Lee YS
    J Phys Chem B; 2008 Dec; 112(50):16021-9. PubMed ID: 19367904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.
    Maldonado AF; Aucar GA
    J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.