These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17115767)

  • 1. Space-time thermodynamics and subsystem observables in a kinetically constrained model of glassy materials.
    Jack RL; Garrahan JP; Chandler D
    J Chem Phys; 2006 Nov; 125(18):184509. PubMed ID: 17115767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical first-order phase transition in kinetically constrained models of glasses.
    Garrahan JP; Jack RL; Lecomte V; Pitard E; van Duijvendijk K; van Wijland F
    Phys Rev Lett; 2007 May; 98(19):195702. PubMed ID: 17677633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of coarse-grained models of supercooled liquids.
    Chandler D; Garrahan JP
    J Chem Phys; 2005 Jul; 123(4):044511. PubMed ID: 16095373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic order-disorder in atomistic models of structural glass formers.
    Hedges LO; Jack RL; Garrahan JP; Chandler D
    Science; 2009 Mar; 323(5919):1309-13. PubMed ID: 19197025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renormalization group study of a kinetically constrained model for strong glasses.
    Whitelam S; Berthier L; Garrahan JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026128. PubMed ID: 15783399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers.
    Speck T; Chandler D
    J Chem Phys; 2012 May; 136(18):184509. PubMed ID: 22583302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of thermodynamic phase transition in a model glass former.
    Santen L; Krauth W
    Nature; 2000 Jun; 405(6786):550-1. PubMed ID: 10850709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations.
    Berthier L; Biroli G; Bouchaud JP; Kob W; Miyazaki K; Reichman DR
    J Chem Phys; 2007 May; 126(18):184504. PubMed ID: 17508808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping potential energy surfaces.
    Wu Y; Schmitt JD; Car R
    J Chem Phys; 2004 Jul; 121(3):1193-200. PubMed ID: 15260660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics.
    Berthier L; Biroli G; Bouchaud JP; Kob W; Miyazaki K; Reichman DR
    J Chem Phys; 2007 May; 126(18):184503. PubMed ID: 17508807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-time thermodynamics of the glass transition.
    Merolle M; Garrahan JP; Chandler D
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):10837-40. PubMed ID: 16043706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and large deviation transitions of the XOR-Fredrickson-Andersen kinetically constrained model.
    Causer L; Lesanovsky I; Bañuls MC; Garrahan JP
    Phys Rev E; 2020 Nov; 102(5-1):052132. PubMed ID: 33327088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable-free exploration of stochastic models: a gene regulatory network example.
    Erban R; Frewen TA; Wang X; Elston TC; Coifman R; Nadler B; Kevrekidis IG
    J Chem Phys; 2007 Apr; 126(15):155103. PubMed ID: 17461667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrical explanation and scaling of dynamical heterogeneities in glass forming systems.
    Garrahan JP; Chandler D
    Phys Rev Lett; 2002 Jul; 89(3):035704. PubMed ID: 12144405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational correlation and dynamic heterogeneity in a kinetically constrained lattice gas.
    Pan AC
    J Chem Phys; 2005 Oct; 123(16):164501. PubMed ID: 16268706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of a fragile three-dimensional kinetically constrained model.
    Berthier L; Garrahan JP
    J Phys Chem B; 2005 Mar; 109(8):3578-85. PubMed ID: 16851396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-solid coexistence via the metadynamics approach.
    Prestipino S; Giaquinta PV
    J Chem Phys; 2008 Mar; 128(11):114707. PubMed ID: 18361601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton.
    Buča B; Garrahan JP; Prosen T; Vanicat M
    Phys Rev E; 2019 Aug; 100(2-1):020103. PubMed ID: 31574613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of docking in postnucleation stages of self-assembly.
    Garza-López RA; Bouchard P; Nicolis G; Sleutel M; Brzezinski J; Kozak JJ
    J Chem Phys; 2008 Mar; 128(11):114701. PubMed ID: 18361595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.