These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17115927)

  • 1. Quantification of small molecule-receptor affinities and kinetics by acoustic profiling.
    Li X; Thompson KS; Godber B; Cooper MA
    Assay Drug Dev Technol; 2006 Oct; 4(5):565-73. PubMed ID: 17115927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip.
    Lee CS; Lee SH; Kim YG; Lee JH; Kim YK; Kim BG
    Biosens Bioelectron; 2007 Jan; 22(6):891-8. PubMed ID: 16679009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors.
    Saitakis M; Tsortos A; Gizeli E
    Biosens Bioelectron; 2010 Mar; 25(7):1688-93. PubMed ID: 20045307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric quartz crystal resonators applied for immunosensing and affinity interaction studies.
    Skládal P
    Methods Mol Biol; 2009; 504():37-50. PubMed ID: 19159089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-sample acoustic biosensing microsystem for protein interaction analysis.
    Mitsakakis K; Gizeli E
    Biosens Bioelectron; 2011 Jul; 26(11):4579-84. PubMed ID: 21665457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel microfluidic surface plasmon resonance imaging arrays.
    Ouellet E; Lausted C; Lin T; Yang CW; Hood L; Lagally ET
    Lab Chip; 2010 Mar; 10(5):581-8. PubMed ID: 20162233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic and equilibrium performance of sensors based on short peptide ligands for affinity adsorption of human IgG using surface plasmon resonance.
    Islam N; Shen F; Gurgel PV; Rojas OJ; Carbonell RG
    Biosens Bioelectron; 2014 Aug; 58():380-7. PubMed ID: 24686150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct quantification of analyte concentration by resonant acoustic profiling.
    Godber B; Thompson KS; Rehak M; Uludag Y; Kelling S; Sleptsov A; Frogley M; Wiehler K; Whalen C; Cooper MA
    Clin Chem; 2005 Oct; 51(10):1962-72. PubMed ID: 16081504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance imaging for affinity-based biosensors.
    Scarano S; Mascini M; Turner AP; Minunni M
    Biosens Bioelectron; 2010 Jan; 25(5):957-66. PubMed ID: 19765967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Faradaic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors.
    Jacquot BC; Muñoz N; Branch DW; Kan EC
    Biosens Bioelectron; 2008 May; 23(10):1503-11. PubMed ID: 18281208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic label-free screening chip: a marriage of multiplexing and high throughput analysis using surface plasmon resonance imaging.
    Krishnamoorthy G; Carlen ET; Bomer JG; Wijnperlé D; deBoer HL; van den Berg A; Schasfoort RB
    Lab Chip; 2010 Apr; 10(8):986-90. PubMed ID: 20358104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents.
    Liu Y; Yu X; Zhao R; Shangguan DH; Bo Z; Liu G
    Biosens Bioelectron; 2003 Oct; 19(1):9-19. PubMed ID: 14558994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisited BIA-MS combination: entire "on-a-chip" processing leading to the proteins identification at low femtomole to sub-femtomole levels.
    Boireau W; Rouleau A; Lucchi G; Ducoroy P
    Biosens Bioelectron; 2009 Jan; 24(5):1121-7. PubMed ID: 18829299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of analyte capture on nanoscale sensors.
    Solomon JE; Paul MR
    Biophys J; 2006 Mar; 90(5):1842-52. PubMed ID: 16339883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging.
    Yuk JS; Kim HS; Jung JW; Jung SH; Lee SJ; Kim WJ; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2006 Feb; 21(8):1521-8. PubMed ID: 16095894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever.
    Hwang KS; Lee JH; Park J; Yoon DS; Park JH; Kim TS
    Lab Chip; 2004 Dec; 4(6):547-52. PubMed ID: 15570363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free amplified bioaffinity detection using terahertz wave technology.
    Menikh A; Mickan SP; Liu H; Maccoll R; Zhang XC
    Biosens Bioelectron; 2004 Oct; 20(3):658-62. PubMed ID: 15494252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.
    Rogez-Florent T; Duhamel L; Goossens L; Six P; Drucbert AS; Depreux P; Danzé PM; Landy D; Goossens JF; Foulon C
    J Mol Recognit; 2014 Jan; 27(1):46-56. PubMed ID: 24375583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic reflectometric interference spectroscopy-based sensing for exploration of protein-protein interaction conditions.
    Kurihara Y; Takama M; Masubuchi M; Ooya T; Takeuchi T
    Biosens Bioelectron; 2013 Feb; 40(1):247-51. PubMed ID: 23010016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.