These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17116428)

  • 1. The enigmatic thymine DNA glycosylase.
    Cortázar D; Kunz C; Saito Y; Steinacher R; Schär P
    DNA Repair (Amst); 2007 Apr; 6(4):489-504. PubMed ID: 17116428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding.
    Smet-Nocca C; Wieruszeski JM; Chaar V; Leroy A; Benecke A
    Biochemistry; 2008 Jun; 47(25):6519-30. PubMed ID: 18512959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase.
    Dong L; Mi R; Glass RA; Barry JN; Cao W
    DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase.
    Gallinari P; Jiricny J
    Nature; 1996 Oct; 383(6602):735-8. PubMed ID: 8878487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation.
    Steinacher R; Schär P
    Curr Biol; 2005 Apr; 15(7):616-23. PubMed ID: 15823533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for three thymine DNA glycosylases in human cell extracts: substrate specificities of thymine DNA glycosylase activities.
    Lari SU; Xu YZ; Day RS
    Med Sci Monit; 2005 Feb; 11(2):BR41-9. PubMed ID: 15668625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of thymine-DNA glycosylase from Aeropyrum pernix.
    Liu XP; Li CP; Hou JL; Liu YF; Liang RB; Liu JH
    Protein Expr Purif; 2010 Mar; 70(1):1-6. PubMed ID: 19825417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover.
    Hardeland U; Steinacher R; Jiricny J; Schär P
    EMBO J; 2002 Mar; 21(6):1456-64. PubMed ID: 11889051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mismatch-specific uracil-DNA glycosylase in repair of 3,N4-ethenocytosine in vivo.
    Jurado J; Maciejewska A; Krwawicz J; Laval J; Saparbaev MK
    DNA Repair (Amst); 2004 Dec; 3(12):1579-90. PubMed ID: 15474419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
    Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2.
    Hardeland U; Kunz C; Focke F; Szadkowski M; Schär P
    Nucleic Acids Res; 2007; 35(11):3859-67. PubMed ID: 17526518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of SUMO-3-modified thymine-DNA glycosylase.
    Baba D; Maita N; Jee JG; Uchimura Y; Saitoh H; Sugasawa K; Hanaoka F; Tochio H; Hiroaki H; Shirakawa M
    J Mol Biol; 2006 May; 359(1):137-47. PubMed ID: 16626738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uracil in DNA--occurrence, consequences and repair.
    Krokan HE; Drabløs F; Slupphaug G
    Oncogene; 2002 Dec; 21(58):8935-48. PubMed ID: 12483510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate of base excision repair of uracil is controlled by the initiating glycosylase.
    Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE
    DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF.
    Horst JP; Fritz HJ
    EMBO J; 1996 Oct; 15(19):5459-69. PubMed ID: 8895589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
    Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs.
    Maiti A; Drohat AC
    DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles.
    Sjolund AB; Senejani AG; Sweasy JB
    Mutat Res; 2013; 743-744():12-25. PubMed ID: 23195996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thymine DNA glycosylase.
    Hardeland U; Bentele M; Lettieri T; Steinacher R; Jiricny J; Schär P
    Prog Nucleic Acid Res Mol Biol; 2001; 68():235-53. PubMed ID: 11554300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites.
    Hendrich B; Hardeland U; Ng HH; Jiricny J; Bird A
    Nature; 1999 Sep; 401(6750):301-4. PubMed ID: 10499592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.