These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17116479)

  • 21. CILAT--a new reagent for quantitative proteomics.
    Li S; Zeng D
    Chem Commun (Camb); 2007 Jun; (21):2181-3. PubMed ID: 17520129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of matrix metalloproteinase active forms in complex proteomes: evaluation of affinity versus photoaffinity capture.
    Bregant S; Huillet C; Devel L; Dabert-Gay AS; Beau F; Thai R; Czarny B; Yiotakis A; Dive V
    J Proteome Res; 2009 May; 8(5):2484-94. PubMed ID: 19271733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
    Sieber SA; Niessen S; Hoover HS; Cravatt BF
    Nat Chem Biol; 2006 May; 2(5):274-81. PubMed ID: 16565715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of individual N-glycans on enzyme activity.
    Skropeta D
    Bioorg Med Chem; 2009 Apr; 17(7):2645-53. PubMed ID: 19285412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A general method for affinity-based proteomic profiling of exo-α-glycosidases.
    Gandy MN; Debowski AW; Stubbs KA
    Chem Commun (Camb); 2011 May; 47(17):5037-9. PubMed ID: 21431156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lectin-based proteomic profiling of aged skeletal muscle: decreased pyruvate kinase isozyme M1 exhibits drastically increased levels of N-glycosylation.
    O'Connell K; Doran P; Gannon J; Ohlendieck K
    Eur J Cell Biol; 2008 Oct; 87(10):793-805. PubMed ID: 18602720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses.
    Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J
    FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and use of mechanism-based protein-profiling probes for retaining beta-D-glucosaminidases facilitate identification of Pseudomonas aeruginosa NagZ.
    Stubbs KA; Scaffidi A; Debowski AW; Mark BL; Stick RV; Vocadlo DJ
    J Am Chem Soc; 2008 Jan; 130(1):327-35. PubMed ID: 18067297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea.
    Abu-Qarn M; Eichler J; Sharon N
    Curr Opin Struct Biol; 2008 Oct; 18(5):544-50. PubMed ID: 18694827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype.
    Adam GC; Sorensen EJ; Cravatt BF
    Nat Biotechnol; 2002 Aug; 20(8):805-9. PubMed ID: 12091914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome and peptidome profiling of spider venoms.
    Liang S
    Expert Rev Proteomics; 2008 Oct; 5(5):731-46. PubMed ID: 18937563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging.
    Dieterich DC; Lee JJ; Link AJ; Graumann J; Tirrell DA; Schuman EM
    Nat Protoc; 2007; 2(3):532-40. PubMed ID: 17406607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional proteomics: protein-protein interactions in vivo.
    Monti M; Cozzolino M; Cozzolino F; Tedesco R; Pucci P
    Ital J Biochem; 2007 Dec; 56(4):310-4. PubMed ID: 19192633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional proteomics for the discovery of carbohydrate-related enzyme activities.
    Pohl NL
    Curr Opin Chem Biol; 2005 Feb; 9(1):76-81. PubMed ID: 15701457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibody technology in proteomics.
    Saerens D; Ghassabeh GH; Muyldermans S
    Brief Funct Genomic Proteomic; 2008 Jul; 7(4):275-82. PubMed ID: 18586755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoaffinity labeling in activity-based protein profiling.
    Geurink PP; Prely LM; van der Marel GA; Bischoff R; Overkleeft HS
    Top Curr Chem; 2012; 324():85-113. PubMed ID: 22028098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulating cell surface glycosylation with a small-molecule switch.
    Dube DH; de Graffenried CL; Kohler JJ
    Methods Enzymol; 2006; 415():213-29. PubMed ID: 17116477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype].
    Ojida A
    Tanpakushitsu Kakusan Koso; 2007 Oct; 52(13 Suppl):1806-7. PubMed ID: 18051435
    [No Abstract]   [Full Text] [Related]  

  • 40. Lipolytic and esterolytic activity-based profiling of murine liver.
    Birner-Gruenberger R; Susani-Etzerodt H; Kollroser M; Rechberger GN; Hermetter A
    Proteomics; 2008 Sep; 8(17):3645-56. PubMed ID: 18683815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.