These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 17116585)
1. Analysis of essential amino acid residues for catalytic activity of glutaminase from Micrococcus luteus K-3. Yano S; Kamemura A; Yoshimune K; Moriguchi M; Yamamoto S; Tachiki T; Wakayama M J Biosci Bioeng; 2006 Oct; 102(4):362-4. PubMed ID: 17116585 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3. Yoshimune K; Shirakihara Y; Shiratori A; Wakayama M; Chantawannakul P; Moriguchi M Biochem Biophys Res Commun; 2006 Aug; 346(4):1118-24. PubMed ID: 16793004 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of salt-tolerant glutaminase from Micrococcus luteus K-3 in the presence and absence of its product L-glutamate and its activator Tris. Yoshimune K; Shirakihara Y; Wakayama M; Yumoto I FEBS J; 2010 Feb; 277(3):738-48. PubMed ID: 20050917 [TBL] [Abstract][Full Text] [Related]
4. Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae RIB40 is salt-tolerant. Masuo N; Yoshimune K; Ito K; Matsushima K; Koyama Y; Moriguchi M J Biosci Bioeng; 2005 Nov; 100(5):576-8. PubMed ID: 16384800 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of salt-tolerant glutaminase from Micrococcus luteus K-3 in Escherichia coli and its purification. Nandakumar R; Wakayama M; Nagano Y; Kawamura T; Sakai K; Moriguchi M Protein Expr Purif; 1999 Mar; 15(2):155-61. PubMed ID: 10049670 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning, overexpression, and purification of Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae RIB40. Masuo N; Ito K; Yoshimune K; Hoshino M; Matsushima K; Koyama Y; Moriguchi M Protein Expr Purif; 2004 Dec; 38(2):272-8. PubMed ID: 15555943 [TBL] [Abstract][Full Text] [Related]
7. Digestion by serine proteases enhances salt tolerance of glutaminase in the marine bacterium Micrococcus luteus K-3. Yoshimune K; Yamashita R; Masuo N; Wakayama M; Moriguchi M Extremophiles; 2004 Dec; 8(6):441-6. PubMed ID: 15290324 [TBL] [Abstract][Full Text] [Related]
8. Crystallization and preliminary X-ray crystallographic studies of salt-tolerant glutaminase from Micrococcus luteus K-3. Chantawannakul P; Yoshimune K; Shirakihara Y; Shiratori A; Wakayama M; Moriguchi M Acta Crystallogr D Biol Crystallogr; 2003 Mar; 59(Pt 3):566-8. PubMed ID: 12595728 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of allylic substrate binding site of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. Fujikura K; Zhang YW; Fujihashi M; Miki K; Koyama T Biochemistry; 2003 Apr; 42(14):4035-41. PubMed ID: 12680756 [TBL] [Abstract][Full Text] [Related]
10. Characterization of salt-tolerant glutaminase from Stenotrophomonas maltophilia NYW-81 and its application in Japanese soy sauce fermentation. Wakayama M; Yamagata T; Kamemura A; Bootim N; Yano S; Tachiki T; Yoshimune K; Moriguchi M J Ind Microbiol Biotechnol; 2005 Sep; 32(9):383-90. PubMed ID: 16012776 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. Kharel Y; Takahashi S; Yamashita S; Koyama T FEBS J; 2006 Feb; 273(3):647-57. PubMed ID: 16420487 [TBL] [Abstract][Full Text] [Related]
12. Essential amino acids for the stability of human butyrylcholinesterase as predicted by CUPSAT server. Thomas B; Boopathy R In Silico Biol; 2008; 8(5-6):517-29. PubMed ID: 19374135 [TBL] [Abstract][Full Text] [Related]
13. Activation and coupling of the glutaminase and synthase reaction of glutamate synthase is mediated by E1013 of the ferredoxin-dependent enzyme, belonging to loop 4 of the synthase domain. Dossena L; Curti B; Vanoni MA Biochemistry; 2007 Apr; 46(15):4473-85. PubMed ID: 17373776 [TBL] [Abstract][Full Text] [Related]
14. A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring-expansion activity. Sim Goo K; Song Chua C; Sim TS Proteins; 2008 Feb; 70(3):739-47. PubMed ID: 17729280 [TBL] [Abstract][Full Text] [Related]
15. Structure and activation mechanism of the human liver-type glutaminase GLS2. Ferreira IM; Quesñay JEN; Bastos AC; Rodrigues CT; Vollmar M; Krojer T; Strain-Damerell C; Burgess-Brown NA; von Delft F; Yue WW; Dias SM; Ambrosio AL Biochimie; 2021 Jun; 185():96-104. PubMed ID: 33746066 [TBL] [Abstract][Full Text] [Related]
16. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis. Rhimi M; Juy M; Aghajari N; Haser R; Bejar S J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581 [TBL] [Abstract][Full Text] [Related]
17. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity. Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273 [TBL] [Abstract][Full Text] [Related]
18. Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. Fischer-Colbrie G; Matama T; Heumann S; Martinkova L; Cavaco Paulo A; Guebitz G J Biotechnol; 2007 Mar; 129(1):62-8. PubMed ID: 17223216 [TBL] [Abstract][Full Text] [Related]
19. Amino acid sequence of the diazooxonorleucine binding site of Acinetobacter and Pseudomonas 7A glutaminase--asparaginase enzymes. Holcenberg JS; Ericsson L; Roberts J Biochemistry; 1978 Feb; 17(3):411-7. PubMed ID: 619999 [TBL] [Abstract][Full Text] [Related]