BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17116644)

  • 1. Disulfide-bond reshuffling in the evolution of an ape placental ribonuclease.
    Zhang J
    Mol Biol Evol; 2007 Feb; 24(2):505-12. PubMed ID: 17116644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of dimeric structure in the ribonuclease superfamily.
    Ciglic MI; Jackson PJ; Raillard SA; Haugg M; Jermann TM; Opitz JG; Trabesinger-Rüf N; Benner SA
    Biochemistry; 1998 Mar; 37(12):4008-22. PubMed ID: 9521722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the [65-72] disulfide bond in oxidative folding of bovine pancreatic ribonuclease A.
    Shin HC; Narayan M; Song MC; Scheraga HA
    Biochemistry; 2003 Oct; 42(39):11514-9. PubMed ID: 14516203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of individual cysteine residues and disulfide bonds in the structure and function of Aspergillus ribonucleolytic toxin restrictocin.
    Nayak SK; Rathore D; Batra JK
    Biochemistry; 1999 Aug; 38(31):10052-8. PubMed ID: 10433712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of disulfide bonds in human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3): implications for NTPDase structural modeling.
    Ivanenkov VV; Meller J; Kirley TL
    Biochemistry; 2005 Jun; 44(25):8998-9012. PubMed ID: 15966724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bond acquisition through eukaryotic protein evolution.
    Wong JW; Ho SY; Hogg PJ
    Mol Biol Evol; 2011 Jan; 28(1):327-34. PubMed ID: 20675408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues.
    Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA
    J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of seminal ribonuclease: pseudogene reactivation or multiple gene inactivation events?
    Sassi SO; Braun EL; Benner SA
    Mol Biol Evol; 2007 Apr; 24(4):1012-24. PubMed ID: 17267422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential cysteine residues for human RNase κ catalytic activity.
    Kiritsi MN; Fragoulis EG; Sideris DC
    FEBS J; 2012 Apr; 279(7):1318-26. PubMed ID: 22324914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic selection for critical residues in ribonucleases.
    Smith BD; Raines RT
    J Mol Biol; 2006 Sep; 362(3):459-78. PubMed ID: 16920150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta.
    Zhang J; Dyer KD; Rosenberg HF
    Nucleic Acids Res; 2002 Mar; 30(5):1169-75. PubMed ID: 11861908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions.
    Zhang J
    Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidative folding rate of bovine pancreatic ribonuclease is enhanced by a covalently attached oligosaccharide.
    Xu G; Narayan M; Scheraga HA
    Biochemistry; 2005 Jul; 44(28):9817-23. PubMed ID: 16008366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer.
    Lee JE; Raines RT
    Biochemistry; 2005 Dec; 44(48):15760-7. PubMed ID: 16313179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily.
    Jermann TM; Opitz JG; Stackhouse J; Benner SA
    Nature; 1995 Mar; 374(6517):57-9. PubMed ID: 7532788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing out disulfide bonds of leech carboxypeptidase inhibitor: implications for its folding, stability and function.
    Arolas JL; Castillo V; Bronsoms S; Aviles FX; Ventura S
    J Mol Biol; 2009 Sep; 392(2):529-46. PubMed ID: 19559710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting disulfide bond connectivity in proteins by correlated mutations analysis.
    Rubinstein R; Fiser A
    Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring synonymous codon usage preferences of disulfide-bonded and non-disulfide bonded cysteines in the E. coli genome.
    Song J; Wang M; Burrage K
    J Theor Biol; 2006 Jul; 241(2):390-401. PubMed ID: 16427089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the early stage of the folding process of reduced lysozyme using all lysozyme variants containing a pair of cysteines.
    Shioi S; Imoto T; Ueda T
    Biochemistry; 2004 May; 43(18):5488-93. PubMed ID: 15122914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting disulfide connectivity patterns.
    Lu CH; Chen YC; Yu CS; Hwang JK
    Proteins; 2007 May; 67(2):262-70. PubMed ID: 17285623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.