BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 17116659)

  • 1. Signaling of mitochondrial biogenesis following oxidant injury.
    Rasbach KA; Schnellmann RG
    J Biol Chem; 2007 Jan; 282(4):2355-62. PubMed ID: 17116659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells.
    Nowak G; Soundararajan S; Mestril R
    Am J Physiol Renal Physiol; 2013 Sep; 305(5):F764-76. PubMed ID: 23804450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C mediates repair of mitochondrial and transport functions after toxicant-induced injury in renal cells.
    Nowak G
    J Pharmacol Exp Ther; 2003 Jul; 306(1):157-65. PubMed ID: 12665543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells.
    Nowak G; Clifton GL; Godwin ML; Bakajsova D
    Am J Physiol Renal Physiol; 2006 Oct; 291(4):F840-55. PubMed ID: 16705147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Renal Regulation of Peroxisome Proliferator-activated Receptor γ Coactivator-1α by Extracellular Signal-Regulated Kinase 1/2 in Physiological and Pathological Conditions.
    Collier JB; Whitaker RM; Eblen ST; Schnellmann RG
    J Biol Chem; 2016 Dec; 291(52):26850-26859. PubMed ID: 27875304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury.
    Rasbach KA; Schnellmann RG
    Biochem Biophys Res Commun; 2007 Apr; 355(3):734-9. PubMed ID: 17307137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. γ-Tocotrienol protects against mitochondrial dysfunction and renal cell death.
    Nowak G; Bakajsova D; Hayes C; Hauer-Jensen M; Compadre CM
    J Pharmacol Exp Ther; 2012 Feb; 340(2):330-8. PubMed ID: 22040679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells.
    Funk JA; Odejinmi S; Schnellmann RG
    J Pharmacol Exp Ther; 2010 May; 333(2):593-601. PubMed ID: 20103585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury.
    Zhuang S; Yan Y; Han J; Schnellmann RG
    J Biol Chem; 2005 Jun; 280(22):21036-42. PubMed ID: 15797859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of cellular functions following oxidant injury.
    Nowak G; Aleo MD; Morgan JA; Schnellmann RG
    Am J Physiol; 1998 Mar; 274(3):F509-15. PubMed ID: 9530267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of cGMP-dependent induction of mitochondrial biogenesis through PKG and p38 MAPK in the kidney.
    Bhargava P; Janda J; Schnellmann RG
    Am J Physiol Renal Physiol; 2020 Feb; 318(2):F322-F328. PubMed ID: 31841384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase C-α activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells.
    Nowak G; Bakajsova D
    Am J Physiol Renal Physiol; 2012 Aug; 303(4):F515-26. PubMed ID: 22674023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells.
    Arany I; Megyesi JK; Nelkin BD; Safirstein RL
    Kidney Int; 2006 Aug; 70(4):669-74. PubMed ID: 16788692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidants and Ca+2 induce PGC-1alpha degradation through calpain.
    Rasbach KA; Green PT; Schnellmann RG
    Arch Biochem Biophys; 2008 Oct; 478(2):130-5. PubMed ID: 18718443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-hydroxytryptamine receptor stimulation of mitochondrial biogenesis.
    Rasbach KA; Funk JA; Jayavelu T; Green PT; Schnellmann RG
    J Pharmacol Exp Ther; 2010 Feb; 332(2):632-9. PubMed ID: 19875674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotection by acetylcholine: a novel mechanism via mitochondrial biogenesis and function involving the PGC-1α pathway.
    Sun L; Zhao M; Yu XJ; Wang H; He X; Liu JK; Zang WJ
    J Cell Physiol; 2013 Jun; 228(6):1238-48. PubMed ID: 23139024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal cell regeneration following oxidant exposure: inhibition by TGF-beta1 and stimulation by ascorbic acid.
    Nowak G; Schnellmann RG
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):175-83. PubMed ID: 9221835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of calcium/calmodulin-dependent protein kinase IV and peroxisome proliferator-activated receptor γ coactivator-1α signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal CA1 subfield after transient global ischemia.
    Chen SD; Lin TK; Lin JW; Yang DI; Lee SY; Shaw FZ; Liou CW; Chuang YC
    J Neurosci Res; 2010 Nov; 88(14):3144-54. PubMed ID: 20799369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.
    Harmon JL; Wills LP; McOmish CE; Demireva EY; Gingrich JA; Beeson CC; Schnellmann RG
    J Pharmacol Exp Ther; 2016 Apr; 357(1):1-9. PubMed ID: 26787771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.