These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 17116744)

  • 1. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases.
    Sacheck JM; Hyatt JP; Raffaello A; Jagoe RT; Roy RR; Edgerton VR; Lecker SH; Goldberg AL
    FASEB J; 2007 Jan; 21(1):140-55. PubMed ID: 17116744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression.
    Lecker SH; Jagoe RT; Gilbert A; Gomes M; Baracos V; Bailey J; Price SR; Mitch WE; Goldberg AL
    FASEB J; 2004 Jan; 18(1):39-51. PubMed ID: 14718385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.
    Fisher AG; Seaborne RA; Hughes TM; Gutteridge A; Stewart C; Coulson JM; Sharples AP; Jarvis JC
    FASEB J; 2017 Dec; 31(12):5268-5282. PubMed ID: 28821632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions.
    Soares RJ; Cagnin S; Chemello F; Silvestrin M; Musaro A; De Pitta C; Lanfranchi G; Sandri M
    J Biol Chem; 2014 Aug; 289(32):21909-25. PubMed ID: 24891504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study.
    Yuan L; Han J; Meng Q; Xi Q; Zhuang Q; Jiang Y; Han Y; Zhang B; Fang J; Wu G
    Oncol Rep; 2015 May; 33(5):2261-8. PubMed ID: 25760630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia.
    Martinelli GB; Olivari D; Re Cecconi AD; Talamini L; Ottoboni L; Lecker SH; Stretch C; Baracos VE; Bathe OF; Resovi A; Giavazzi R; Cervo L; Piccirillo R
    Oncogene; 2016 Dec; 35(48):6212-6222. PubMed ID: 27212031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of potential target genes associated with the reversion of androgen-dependent skeletal muscle atrophy.
    de O Coelho P; Guarnier FA; Figueiredo LB; Zaramela LS; Pacini ESA; Godinho RO; Gomes MD
    Arch Biochem Biophys; 2019 Mar; 663():173-182. PubMed ID: 30639329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy.
    Lang CH; Pruznak A; Navaratnarajah M; Rankine KA; Deiter G; Magne H; Offord EA; Breuillé D
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(3):E416-28. PubMed ID: 23757407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats.
    Maki T; Yamamoto D; Nakanishi S; Iida K; Iguchi G; Takahashi Y; Kaji H; Chihara K; Okimura Y
    Nutr Res; 2012 Sep; 32(9):676-83. PubMed ID: 23084640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle.
    Frost RA; Nystrom GJ; Jefferson LS; Lang CH
    Am J Physiol Endocrinol Metab; 2007 Feb; 292(2):E501-12. PubMed ID: 17003238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy.
    Qin W; Pan J; Bauman WA; Cardozo CP
    BMC Genomics; 2010 Oct; 11():596. PubMed ID: 20969782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ; O'Leary MF; Chabi B; Wicks KL; Hood DA
    J Appl Physiol (1985); 2007 Mar; 102(3):1143-51. PubMed ID: 17122379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation.
    Jagoe RT; Lecker SH; Gomes M; Goldberg AL
    FASEB J; 2002 Nov; 16(13):1697-712. PubMed ID: 12409312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting.
    Bédard N; Jammoul S; Moore T; Wykes L; Hallauer PL; Hastings KE; Stretch C; Baracos V; Chevalier S; Plourde M; Coyne E; Wing SS
    FASEB J; 2015 Sep; 29(9):3889-98. PubMed ID: 26048142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes.
    Castillero E; Alamdari N; Lecker SH; Hasselgren PO
    Metabolism; 2013 Oct; 62(10):1495-502. PubMed ID: 23866982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of gene expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal muscles.
    Kostrominova TY; Dow DE; Dennis RG; Miller RA; Faulkner JA
    Physiol Genomics; 2005 Jul; 22(2):227-43. PubMed ID: 15840640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ubiquitin-protein ligase Nedd4 targets Notch1 in skeletal muscle and distinguishes the subset of atrophies caused by reduced muscle tension.
    Koncarevic A; Jackman RW; Kandarian SC
    FASEB J; 2007 Feb; 21(2):427-37. PubMed ID: 17172638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy.
    Kang J; Jeong MG; Oh S; Jang EJ; Kim HK; Hwang ES
    FEBS Lett; 2014 Jan; 588(1):79-85. PubMed ID: 24269680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle-specific DJ-1 ablation-induced atrogenes expression and mitochondrial dysfunction contributing to muscular atrophy.
    Zhang S; Yan H; Ding J; Wang R; Feng Y; Zhang X; Kong X; Gong H; Lu X; Ma A; Hua Y; Liu H; Guo J; Gao H; Zhou Z; Wang R; Chen P; Liu T; Kong X
    J Cachexia Sarcopenia Muscle; 2023 Oct; 14(5):2126-2142. PubMed ID: 37469245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo.
    Pires-Oliveira M; Maragno AL; Parreiras-e-Silva LT; Chiavegatti T; Gomes MD; Godinho RO
    J Appl Physiol (1985); 2010 Feb; 108(2):266-73. PubMed ID: 19926828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.