BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17116749)

  • 1. Comparative proteomics of clathrin-coated vesicles.
    Borner GH; Harbour M; Hester S; Lilley KS; Robinson MS
    J Cell Biol; 2006 Nov; 175(4):571-8. PubMed ID: 17116749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of clathrin-coated vesicles.
    McPherson PS
    Proteomics; 2010 Nov; 10(22):4025-39. PubMed ID: 21080493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components.
    Dahhan DA; Reynolds GD; Cárdenas JJ; Eeckhout D; Johnson A; Yperman K; Kaufmann WA; Vang N; Yan X; Hwang I; Heese A; De Jaeger G; Friml J; Van Damme D; Pan J; Bednarek SY
    Plant Cell; 2022 May; 34(6):2150-2173. PubMed ID: 35218346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles.
    Borner GH; Antrobus R; Hirst J; Bhumbra GS; Kozik P; Jackson LP; Sahlender DA; Robinson MS
    J Cell Biol; 2012 Apr; 197(1):141-60. PubMed ID: 22472443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Podocyte Cargo Proteins by Proteomic Analysis of Clathrin-Coated Vesicles.
    Groener M; Wang Y; Cross E; Tian X; Ebenezer K; Baik E; Pedigo C; Schiffer M; Inoue K; Ishibe S
    Kidney360; 2020 Jun; 1(6):480-490. PubMed ID: 35368594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorting of major cargo glycoproteins into clathrin-coated vesicles.
    Harasaki K; Lubben NB; Harbour M; Taylor MJ; Robinson MS
    Traffic; 2005 Nov; 6(11):1014-26. PubMed ID: 16190982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-stoichiometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver.
    Girard M; Allaire PD; McPherson PS; Blondeau F
    Mol Cell Proteomics; 2005 Aug; 4(8):1145-54. PubMed ID: 15933375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics.
    Wasiak S; Legendre-Guillemin V; Puertollano R; Blondeau F; Girard M; de Heuvel E; Boismenu D; Bell AW; Bonifacino JS; McPherson PS
    J Cell Biol; 2002 Sep; 158(5):855-62. PubMed ID: 12213833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling.
    Blondeau F; Ritter B; Allaire PD; Wasiak S; Girard M; Hussain NK; Angers A; Legendre-Guillemin V; Roy L; Boismenu D; Kearney RE; Bell AW; Bergeron JJ; McPherson PS
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3833-8. PubMed ID: 15007177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct and overlapping roles for AP-1 and GGAs revealed by the "knocksideways" system.
    Hirst J; Borner GH; Antrobus R; Peden AA; Hodson NA; Sahlender DA; Robinson MS
    Curr Biol; 2012 Sep; 22(18):1711-6. PubMed ID: 22902756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CVAK104 is a novel regulator of clathrin-mediated SNARE sorting.
    Borner GH; Rana AA; Forster R; Harbour M; Smith JC; Robinson MS
    Traffic; 2007 Jul; 8(7):893-903. PubMed ID: 17587408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological basket weaving: formation and function of clathrin-coated vesicles.
    Brodsky FM; Chen CY; Knuehl C; Towler MC; Wakeham DE
    Annu Rev Cell Dev Biol; 2001; 17():517-68. PubMed ID: 11687498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolating HeLa cell fractions enriched for clathrin-coated vesicles.
    Borner GH; Fielding AB
    Cold Spring Harb Protoc; 2014 Nov; 2014(11):1184-7. PubMed ID: 25368312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using in-gel digestion and an Orbitrap mass spectrometer to analyze the proteome of clathrin-coated vesicles.
    Borner GH; Fielding AB
    Cold Spring Harb Protoc; 2014 Nov; 2014(11):1188-91. PubMed ID: 25368313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms in clathrin-mediated membrane budding revealed through subcellular proteomics.
    Ritter B; Blondeau F; Denisov AY; Gehring K; McPherson PS
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):769-73. PubMed ID: 15494011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of epsinR and gadkin to clathrin-mediated intracellular trafficking.
    Hirst J; Edgar JR; Borner GH; Li S; Sahlender DA; Antrobus R; Robinson MS
    Mol Biol Cell; 2015 Sep; 26(17):3085-103. PubMed ID: 26179914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tyrosine-based lysosomal targeting signal in lamp-1 mediates sorting into Golgi-derived clathrin-coated vesicles.
    Höning S; Griffith J; Geuze HJ; Hunziker W
    EMBO J; 1996 Oct; 15(19):5230-9. PubMed ID: 8895568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EpsinR is an adaptor for the SNARE protein Vti1b.
    Hirst J; Miller SE; Taylor MJ; von Mollard GF; Robinson MS
    Mol Biol Cell; 2004 Dec; 15(12):5593-602. PubMed ID: 15371541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide motifs: building the clathrin machinery.
    McPherson PS; Ritter B
    Mol Neurobiol; 2005 Aug; 32(1):73-87. PubMed ID: 16077185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model.
    Robinson DG; Neuhaus JM
    J Exp Bot; 2016 Aug; 67(15):4435-49. PubMed ID: 27262127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.