BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17117426)

  • 1. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications.
    Kaufmann AM; Krise JP
    J Pharm Sci; 2007 Apr; 96(4):729-46. PubMed ID: 17117426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells).
    Kazmi F; Hensley T; Pope C; Funk RS; Loewen GJ; Buckley DB; Parkinson A
    Drug Metab Dispos; 2013 Apr; 41(4):897-905. PubMed ID: 23378628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug-drug interactions involving lysosomes.
    Logan R; Kong A; Krise JP
    J Pharm Sci; 2013 Nov; 102(11):4173-80. PubMed ID: 23970383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of amine accumulation in, and egress from, lysosomes.
    Goldman SD; Funk RS; Rajewski RA; Krise JP
    Bioanalysis; 2009 Nov; 1(8):1445-59. PubMed ID: 21083094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts.
    Logan R; Kong AC; Krise JP
    J Pharm Sci; 2014 Oct; 103(10):3287-96. PubMed ID: 25042198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amine-containing molecules and the induction of an expanded lysosomal volume phenotype: a structure-activity relationship study.
    Logan R; Kong AC; Axcell E; Krise JP
    J Pharm Sci; 2014 May; 103(5):1572-80. PubMed ID: 24647827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages.
    Ufuk A; Assmus F; Francis L; Plumb J; Damian V; Gertz M; Houston JB; Galetin A
    Mol Pharm; 2017 Apr; 14(4):1033-1046. PubMed ID: 28252969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysosomes as mediators of drug resistance in cancer.
    Zhitomirsky B; Assaraf YG
    Drug Resist Updat; 2016 Jan; 24():23-33. PubMed ID: 26830313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.
    Logan R; Funk RS; Axcell E; Krise JP
    Expert Opin Drug Metab Toxicol; 2012 Aug; 8(8):943-58. PubMed ID: 22616667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions.
    Sharma A; Vaghasiya K; Ray E; Verma RK
    J Drug Target; 2018 Mar; 26(3):208-221. PubMed ID: 28862054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoplasmic vacuolization during exposure to drugs and other substances.
    Aki T; Nara A; Uemura K
    Cell Biol Toxicol; 2012 Jun; 28(3):125-31. PubMed ID: 22431173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of Lysosomal Trapping of Basic Lipophilic Compounds Using In Vitro Assays and In Silico Predictions Based on the Determination of the Full pH Profile of the Endo-/Lysosomal System in Rat Hepatocytes.
    Schmitt MV; Lienau P; Fricker G; Reichel A
    Drug Metab Dispos; 2019 Jan; 47(1):49-57. PubMed ID: 30409837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel assay reveals that weakly basic model compounds concentrate in lysosomes to an extent greater than pH-partitioning theory would predict.
    Duvvuri M; Krise JP
    Mol Pharm; 2005; 2(6):440-8. PubMed ID: 16323951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer.
    Shirbhate E; Singh V; Mishra A; Jahoriya V; Veerasamy R; Tiwari AK; Rajak H
    Mini Rev Med Chem; 2024 Feb; ():. PubMed ID: 38343053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60.
    Duvvuri M; Gong Y; Chatterji D; Krise JP
    J Biol Chem; 2004 Jul; 279(31):32367-72. PubMed ID: 15181006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of phosphatidylserine binding in tissue distribution of amine-containing basic compounds.
    Murakami T; Yumoto R
    Expert Opin Drug Metab Toxicol; 2011 Mar; 7(3):353-64. PubMed ID: 21332386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro.
    Ndolo RA; Luan Y; Duan S; Forrest ML; Krise JP
    PLoS One; 2012; 7(11):e49366. PubMed ID: 23145164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitors of vacuolar H+-ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells.
    Ouar Z; Bens M; Vignes C; Paulais M; Pringel C; Fleury J; Cluzeaud F; Lacave R; Vandewalle A
    Biochem J; 2003 Feb; 370(Pt 1):185-93. PubMed ID: 12435274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of lysosomotropic compounds based on the distribution and size of lysosomes.
    Seo I; Jha BK; Lim JG; Suh SI; Suh MH; Baek WK
    Biochem Biophys Res Commun; 2014 Jul; 450(1):189-94. PubMed ID: 24878535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.