BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 17117465)

  • 21. Relaxation effects in the gel electrophoresis of DNA in intermittent fields.
    Jamil T; Frisch HL; Lerman LS
    Biopolymers; 1989 Aug; 28(8):1413-27. PubMed ID: 2526661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced capacity for electrophoretic capture of plasmid DNA by agarase treatment of agarose gels.
    Cole KD; Akerman B
    Biomacromolecules; 2000; 1(4):771-81. PubMed ID: 11710211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sieving of double-stranded DNA during agarose gel electrophoresis.
    Serwer P
    Electrophoresis; 1989; 10(5-6):327-31. PubMed ID: 2670547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gel and buffer effects on the migration of DNA molecules in agarose.
    Hamelin C; Yelle J
    Appl Theor Electrophor; 1990; 1(5):225-31. PubMed ID: 2151559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of supercoiled DNA by agarose gel electrophoresis using low-conducting sodium threonine medium.
    Ishido T; Ishikawa M; Hirano K
    Anal Biochem; 2010 May; 400(1):148-50. PubMed ID: 20085743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new mode of rotating gel electrophoresis for fractionating linear and circular duplex DNA: the effects of electrophoresis during the gel's rotation.
    Serwer P; Hayes SJ
    Appl Theor Electrophor; 1989; 1(2):95-8. PubMed ID: 2535116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation of different physical forms of plasmid DNA using a combination of low electric field strength and flow in porous media: effect of different field gradients and porosity of the media.
    Cole KD; Tellez CM; Blakesley RW
    Electrophoresis; 2000 Mar; 21(5):1010-7. PubMed ID: 10768788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relative contributions of dispersion and diffusion to band spreading (resolution) in gel electrophoresis.
    Yarmola E; Sokoloff H; Chrambach A
    Electrophoresis; 1996 Sep; 17(9):1416-9. PubMed ID: 8905256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic study of mechanisms in the electrophoresis of supercoiled DNA.
    Manage DP; Imriskova-Sosova I; Glerum DM; Backhouse CJ
    Electrophoresis; 2008 Jun; 29(12):2466-76. PubMed ID: 18512674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of DNA molecules in agarose gel under sinusoidal electric fields.
    Starchev K; Sturm J; Weill G
    Electrophoresis; 1996 Mar; 17(3):465-70. PubMed ID: 8740159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of closed circular DNA from linear DNA by electrophoresis in two dimensions in agarose gels.
    Oppenheim A
    Nucleic Acids Res; 1981 Dec; 9(24):6805-12. PubMed ID: 6278448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Migration properties of circular DNAs using orthogonal-field-alternation gel electrophoresis.
    Hightower RC; Santi DV
    Electrophoresis; 1989; 10(5-6):283-90. PubMed ID: 2670543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of DNA's fractionation during pulsed-field agarose gel electrophoresis: a hypothesis.
    Serwer P
    Appl Theor Electrophor; 1988; 1(1):19-22. PubMed ID: 3154956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Telomeric interactions result in the formation of intramolecular circles behaving as topologically constrained.
    Lipps HJ; Feiler S; Azorin F
    J Mol Biol; 1998; 283(1):1-7. PubMed ID: 9761668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of DNA knots and catenanes by agarose-gel electrophoresis.
    Levene SD; Tsen H
    Methods Mol Biol; 1999; 94():75-85. PubMed ID: 12844864
    [No Abstract]   [Full Text] [Related]  

  • 37. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA electrophoresis in agarose gels: a simple relation describing the length dependence of mobility.
    Van W; Beheshti A; Rill RL
    Electrophoresis; 2002 Jan; 23(1):15-9. PubMed ID: 11824615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of pulse strength and pulse duration on in vitro DNA electromobility.
    Zaharoff DA; Yuan F
    Bioelectrochemistry; 2004 Apr; 62(1):37-45. PubMed ID: 14990324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of DNA topoisomers, knots, and catenanes by agarose gel electrophoresis.
    Levene SD
    Methods Mol Biol; 2009; 582():11-25. PubMed ID: 19763938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.