These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17117803)

  • 1. Enantiomeric differences in permethrin degradation pathways in soil and sediment.
    Qin S; Gan J
    J Agric Food Chem; 2006 Nov; 54(24):9145-51. PubMed ID: 17117803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment.
    Qin S; Budd R; Bondarenko S; Liu W; Gan J
    J Agric Food Chem; 2006 Jul; 54(14):5040-5. PubMed ID: 16819914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides.
    Liu W; Gan JJ; Qin S
    Chirality; 2005; 17 Suppl():S127-33. PubMed ID: 15806620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils.
    Tan H; Cao Y; Tang T; Qian K; Chen WL; Li J
    Sci Total Environ; 2008 Dec; 407(1):428-37. PubMed ID: 18835630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Diastereo- and Enantioselectivity in Degradation of Synthetic Pyrethroids in Soils.
    Li S; Li Z; Li Q; Zhao J; Li S
    Chirality; 2016 Jan; 28(1):72-7. PubMed ID: 26497288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin.
    Liu W; Gan J; Lee S; Werner I
    Environ Toxicol Chem; 2005 Aug; 24(8):1861-6. PubMed ID: 16152954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in vitro metabolism of a pyrethroid insecticide, permethrin, and its hydrolysis products in rats.
    Nakamura Y; Sugihara K; Sone T; Isobe M; Ohta S; Kitamura S
    Toxicology; 2007 Jun; 235(3):176-84. PubMed ID: 17451859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of environmental changes on degradation of chiral pollutants in soils.
    Lewis DL; Garrison AW; Wommack KE; Whittemore A; Steudler P; Melillo J
    Nature; 1999 Oct; 401(6756):898-901. PubMed ID: 10553905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereo and enantioselective degradation of beta-Cypermethrin and beta-Cyfluthrin in soil.
    Li ZY; Zhang ZC; Zhang L; Leng L
    Bull Environ Contam Toxicol; 2008 Apr; 80(4):335-9. PubMed ID: 18311530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction - enantioselective gas chromatography.
    Liu W; Gan JJ
    J Agric Food Chem; 2004 Feb; 52(4):736-41. PubMed ID: 14969524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro metabolism of cis- and trans-permethrin by rat liver microsomes, and its effect on estrogenic and anti-androgenic activities.
    Tange S; Fujimoto N; Uramaru N; Sugihara K; Ohta S; Kitamura S
    Environ Toxicol Pharmacol; 2014 May; 37(3):996-1005. PubMed ID: 24731973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ability of four emergent macrophytes to remediate permethrin in mesocosm experiments.
    Moore MT; Kröger R; Cooper CM; Smith S
    Arch Environ Contam Toxicol; 2009 Aug; 57(2):282-8. PubMed ID: 19458989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro metabolism of trans-permethrin and its major metabolites, PBalc and PBacid, in humans.
    Takaku T; Mikata K; Matsui M; Nishioka K; Isobe N; Kaneko H
    J Agric Food Chem; 2011 May; 59(9):5001-5. PubMed ID: 21456540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus.
    You J; Brennan A; Lydy MJ
    Chemosphere; 2009 Jun; 75(11):1477-82. PubMed ID: 19278716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation pathways of 14c-chlorothalonil in tropical soils.
    Regitano JB; Tornisielo VL; Lavorenti A; Pacovsky RS
    Arch Environ Contam Toxicol; 2001 Apr; 40(3):295-302. PubMed ID: 11443358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No acute toxicity to Uca pugnax, the mud fiddler crab, following a 96-h exposure to sediment-bound permethrin.
    Stueckle TA; Griffin K; Foran CM
    Environ Toxicol; 2008 Aug; 23(4):530-8. PubMed ID: 18214939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1.
    Liu Y; Han P; Li XY; Shih K; Gu JD
    J Hazard Mater; 2011 Sep; 192(3):1633-40. PubMed ID: 21794984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin.
    Liu W; Gan JJ; Lee S; Werner I
    J Agric Food Chem; 2004 Oct; 52(20):6233-8. PubMed ID: 15453692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish.
    Jin Y; Wang W; Xu C; Fu Z; Liu W
    Aquat Toxicol; 2008 Jun; 88(2):146-52. PubMed ID: 18499281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental behavior of the chiral organophosphorus insecticide acephate and its chiral metabolite methamidophos: enantioselective transformation and degradation in soils.
    Wang X; Li Z; Zhang H; Xu J; Qi P; Xu H; Wang Q; Wang X
    Environ Sci Technol; 2013 Aug; 47(16):9233-40. PubMed ID: 23883440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.