These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17117803)

  • 41. The chiral separation and enantioselective degradation of the chiral herbicide napropamide.
    Qi Y; Liu D; Sun M; Di S; Wang P; Zhou Z
    Chirality; 2014 Feb; 26(2):108-13. PubMed ID: 24436218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of soil properties on the enantioselective dissipation of the herbicide lactofen in soils.
    Diao J; Lv C; Wang X; Dang Z; Zhu W; Zhou Z
    J Agric Food Chem; 2009 Jul; 57(13):5865-71. PubMed ID: 19507858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of capillary electrophoresis to study the enantioselective transformation of five chiral pesticides in aerobic soil slurries.
    Jarman JL; Jones WJ; Howell LA; Garrison AW
    J Agric Food Chem; 2005 Aug; 53(16):6175-82. PubMed ID: 16076090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of solid-liquid partition coefficients (K(d)) for diazinon, propetamphos and cis-permethrin: implications for sheep dip disposal.
    Cooke CM; Shaw G; Lester JN; Collins CD
    Sci Total Environ; 2004 Aug; 329(1-3):197-213. PubMed ID: 15262167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides.
    Schneiderheinze JM; Armstrong DW; Berthod A
    Chirality; 1999; 11(4):330-7. PubMed ID: 10224660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enantioselective degradation and chiral stability of malathion in environmental samples.
    Sun M; Liu D; Zhou G; Li J; Qiu X; Zhou Z; Wang P
    J Agric Food Chem; 2012 Jan; 60(1):372-9. PubMed ID: 22117565
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases.
    Ross MK; Borazjani A; Edwards CC; Potter PM
    Biochem Pharmacol; 2006 Feb; 71(5):657-69. PubMed ID: 16387282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 8-2 fluorotelomer alcohol aerobic soil biodegradation: pathways, metabolites, and metabolite yields.
    Wang N; Szostek B; Buck RC; Folsom PW; Sulecki LM; Gannon JT
    Chemosphere; 2009 May; 75(8):1089-96. PubMed ID: 19217141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of formulation and repeated applications on the enantioselectivity of metalaxyl dissipation and leaching in soil.
    Celis R; Gámiz B; Adelino MA; Cornejo J; Hermosín MC
    Pest Manag Sci; 2015 Nov; 71(11):1572-81. PubMed ID: 25492063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fate characterization of a novel herbicide ZJ0273 in aerobic soils using multi-position 14C labeling.
    Wang H; Ye Q; Yue L; Han A; Yu Z; Wang W; Yang Z; Lu L
    Sci Total Environ; 2009 Jun; 407(13):4134-9. PubMed ID: 19395002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein adduct formation by glucuronide metabolites of permethrin.
    Noort D; van Zuylen A; Fidder A; van Ommen B; Hulst AG
    Chem Res Toxicol; 2008 Jul; 21(7):1396-406. PubMed ID: 18549292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective degradation and enantiomerization of indoxacarb in soil.
    Sun D; Pang J; Qiu J; Li L; Liu C; Jiao B
    J Agric Food Chem; 2013 Nov; 61(47):11273-7. PubMed ID: 24160676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.
    Monteil-Rivera F; Halasz A; Manno D; Kuperman RG; Thiboutot S; Ampleman G; Hawari J
    Environ Pollut; 2009 Jan; 157(1):77-85. PubMed ID: 18801604
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enantioselective degradation and chiral stability of phenthoate in soil.
    Li ZY; Zhang ZC; Zhang L; Leng L
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):153-7. PubMed ID: 17510729
    [No Abstract]   [Full Text] [Related]  

  • 55. Stereoisomeric isolation and stereoselective fate of insecticide paichongding in flooded paddy soils.
    Li J; Zhang J; Li C; Wang W; Yang Z; Wang H; Gan J; Ye Q; Xu X; Li Z
    Environ Sci Technol; 2013 Nov; 47(22):12768-74. PubMed ID: 23985071
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chirality of pollutants--effects on metabolism and fate.
    Müller TA; Kohler HP
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):300-16. PubMed ID: 14716466
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis.
    Heidari R; Devonshire AL; Campbell BE; Dorrian SJ; Oakeshott JG; Russell RJ
    Insect Biochem Mol Biol; 2005 Jun; 35(6):597-609. PubMed ID: 15857765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enantioselective bioaccumulation of soil-associated fipronil enantiomers in Tubifex tubifex.
    Liu T; Wang P; Lu Y; Zhou G; Diao J; Zhou Z
    J Hazard Mater; 2012 Jun; 219-220():50-6. PubMed ID: 22502899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An observational study of 127 preschool children at their homes and daycare centers in Ohio: environmental pathways to cis- and trans-permethrin exposure.
    Morgan MK; Sheldon LS; Croghan CW; Jones PA; Chuang JC; Wilson NK
    Environ Res; 2007 Jun; 104(2):266-74. PubMed ID: 17258193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enantioselective residue dissipation of hexaconazole in cucumber (Cucumis sativus L.), head cabbage (Brassica oleracea L. var. caulorapa DC.), and soils.
    Wang X; Zhang H; Xu H; Wang X; Wu C; Yang H; Li Z; Wang Q
    J Agric Food Chem; 2012 Mar; 60(9):2212-8. PubMed ID: 22309697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.