These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 17117860)
21. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1. Bertoni G; Martino M; Galli E; Barbieri P Appl Environ Microbiol; 1998 Oct; 64(10):3626-32. PubMed ID: 9758777 [TBL] [Abstract][Full Text] [Related]
22. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes. Lee D; Lippard SJ Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083 [TBL] [Abstract][Full Text] [Related]
23. Hydroxylation of C-H bonds at carboxylate-bridged diiron centres. Lippard SJ Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):861-77; discussion 1035-40. PubMed ID: 15901540 [TBL] [Abstract][Full Text] [Related]
24. Dioxygen activation at non-heme diiron centers: characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase. Murray LJ; García-Serres R; Naik S; Huynh BH; Lippard SJ J Am Chem Soc; 2006 Jun; 128(23):7458-9. PubMed ID: 16756297 [TBL] [Abstract][Full Text] [Related]
25. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Davydov R; Valentine AM; Komar-Panicucci S; Hoffman BM; Lippard SJ Biochemistry; 1999 Mar; 38(13):4188-97. PubMed ID: 10194335 [TBL] [Abstract][Full Text] [Related]
26. Residues in Methylosinus trichosporium OB3b methane monooxygenase component B involved in molecular interactions with reduced- and oxidized-hydroxylase component: a role for the N-terminus. Chang SL; Wallar BJ; Lipscomb JD; Mayo KH Biochemistry; 2001 Aug; 40(32):9539-51. PubMed ID: 11583153 [TBL] [Abstract][Full Text] [Related]
27. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone. Vardar G; Ryu K; Wood TK J Biotechnol; 2005 Jan; 115(2):145-56. PubMed ID: 15607233 [TBL] [Abstract][Full Text] [Related]
28. The role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on Pseudomonas sp. OX1 toluene o-xylene monooxygenase activity and regiospecificity. Sönmez B; Yanık-Yıldırım KC; Wood TK; Vardar-Schara G Biotechnol Bioeng; 2014 Aug; 111(8):1506-12. PubMed ID: 24519264 [TBL] [Abstract][Full Text] [Related]
29. Determination by X-ray absorption spectroscopy of the Fe-Fe separation in the oxidized form of the hydroxylase of methane monooxygenase alone and in the presence of MMOD. Rudd DJ; Sazinsky MH; Merkx M; Lippard SJ; Hedman B; Hodgson KO Inorg Chem; 2004 Jul; 43(15):4579-89. PubMed ID: 15257585 [TBL] [Abstract][Full Text] [Related]
31. Tracking a defined route for O₂ migration in a dioxygen-activating diiron enzyme. Song WJ; Gucinski G; Sazinsky MH; Lippard SJ Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14795-800. PubMed ID: 21859951 [TBL] [Abstract][Full Text] [Related]
32. Threonine 201 in the diiron enzyme toluene 4-monooxygenase is not required for catalysis. Pikus JD; Mitchell KH; Studts JM; McClay K; Steffan RJ; Fox BG Biochemistry; 2000 Feb; 39(4):791-9. PubMed ID: 10651645 [TBL] [Abstract][Full Text] [Related]
33. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for enhanced chlorinated ethene degradation and o-xylene oxidation. Vardar G; Wood TK Appl Microbiol Biotechnol; 2005 Sep; 68(4):510-7. PubMed ID: 15696279 [TBL] [Abstract][Full Text] [Related]
34. Conformational analysis of putative regulatory subunit D of the toluene/o-xylene-monooxygenase complex from Pseudomonas stutzeri OX1. Scognamiglio R; Notomista E; Barbieri P; Pucci P; Dal Piaz F; Tramontano A; Di Donato A Protein Sci; 2001 Mar; 10(3):482-90. PubMed ID: 11344317 [TBL] [Abstract][Full Text] [Related]
35. Mutation of glutamic acid 103 of toluene o-xylene monooxygenase as a means to control the catabolic efficiency of a recombinant upper pathway for degradation of methylated aromatic compounds. Cafaro V; Notomista E; Capasso P; Di Donato A Appl Environ Microbiol; 2005 Aug; 71(8):4744-50. PubMed ID: 16085871 [TBL] [Abstract][Full Text] [Related]
36. Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Arenghi FL; Pinti M; Galli E; Barbieri P Appl Environ Microbiol; 1999 Sep; 65(9):4057-63. PubMed ID: 10473416 [TBL] [Abstract][Full Text] [Related]
37. Dioxygen activation in methane monooxygenase: a theoretical study. Gherman BF; Baik MH; Lippard SJ; Friesner RA J Am Chem Soc; 2004 Mar; 126(9):2978-90. PubMed ID: 14995216 [TBL] [Abstract][Full Text] [Related]
38. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Cafaro V; Izzo V; Scognamiglio R; Notomista E; Capasso P; Casbarra A; Pucci P; Di Donato A Appl Environ Microbiol; 2004 Apr; 70(4):2211-9. PubMed ID: 15066815 [TBL] [Abstract][Full Text] [Related]
39. Diiron oxidation state control of substrate access to the active site of soluble methane monooxygenase mediated by the regulatory component. Wang W; Lippard SJ J Am Chem Soc; 2014 Feb; 136(6):2244-7. PubMed ID: 24476336 [TBL] [Abstract][Full Text] [Related]
40. Solution structure of the toluene 4-monooxygenase effector protein (T4moD). Hemmi H; Studts JM; Chae YK; Song J; Markley JL; Fox BG Biochemistry; 2001 Mar; 40(12):3512-24. PubMed ID: 11297417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]