These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 17118444)

  • 1. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone.
    Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N
    Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro.
    Jäger M; Feser T; Denck H; Krauspe R
    Ann Biomed Eng; 2005 Oct; 33(10):1319-32. PubMed ID: 16240081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate.
    Takahashi Y; Yamamoto M; Tabata Y
    Biomaterials; 2005 Jun; 26(17):3587-96. PubMed ID: 15621249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation.
    Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H
    Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide production by endothelial cells derived from blood progenitors cultured on NaOH-treated polycaprolactone films: A biofunctionality study.
    Serrano MC; Pagani R; Vallet-Regí M; Peña J; Comas JV; Portolés MT
    Acta Biomater; 2009 Jul; 5(6):2045-53. PubMed ID: 19332384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering on patterned collagen films: an in vitro study.
    Ber S; Torun Köse G; Hasirci V
    Biomaterials; 2005 May; 26(14):1977-86. PubMed ID: 15576172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics.
    Kotobuki N; Ioku K; Kawagoe D; Fujimori H; Goto S; Ohgushi H
    Biomaterials; 2005 Mar; 26(7):779-85. PubMed ID: 15350783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus.
    Kaur G; Valarmathi MT; Potts JD; Wang Q
    Biomaterials; 2008 Oct; 29(30):4074-81. PubMed ID: 18649940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells.
    Castano H; O'Rear EA; McFetridge PS; Sikavitsas VI
    Macromol Biosci; 2004 Aug; 4(8):785-94. PubMed ID: 15468272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers.
    Hosseinkhani H; Hosseinkhani M; Kobayashi H
    Biomed Mater; 2006 Mar; 1(1):8-15. PubMed ID: 18458380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells in PHBV/wollastonite composite scaffolds.
    Li H; Zhai W; Chang J
    J Biomater Appl; 2009 Sep; 24(3):231-46. PubMed ID: 18987024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2005 Dec; 26(34):7057-67. PubMed ID: 16023712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro.
    Mei N; Chen G; Zhou P; Chen X; Shao ZZ; Pan LF; Wu CG
    J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defined high protein content surfaces for stem cell culture.
    Doran MR; Frith JE; Prowse AB; Fitzpatrick J; Wolvetang EJ; Munro TP; Gray PP; Cooper-White JJ
    Biomaterials; 2010 Jul; 31(19):5137-42. PubMed ID: 20378164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G; Zhao L; Cui L; Liu W; Cao Y
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet light-mediated photofunctionalization of titanium to promote human mesenchymal stem cell migration, attachment, proliferation and differentiation.
    Aita H; Att W; Ueno T; Yamada M; Hori N; Iwasa F; Tsukimura N; Ogawa T
    Acta Biomater; 2009 Oct; 5(8):3247-57. PubMed ID: 19427421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.