BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 17118485)

  • 1. Freeze-drying of nanoparticles: formulation, process and storage considerations.
    Abdelwahed W; Degobert G; Stainmesse S; Fessi H
    Adv Drug Deliv Rev; 2006 Dec; 58(15):1688-713. PubMed ID: 17118485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles.
    Ali ME; Lamprecht A
    Int J Pharm; 2017 Jan; 516(1-2):170-177. PubMed ID: 27845211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization.
    Trenkenschuh E; Friess W
    Eur J Pharm Biopharm; 2021 Aug; 165():345-360. PubMed ID: 34052428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles.
    Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B
    Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.
    Anhorn MG; Mahler HC; Langer K
    Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles.
    Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B
    Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-drying of nanosuspensions, part 3: investigation of factors compromising storage stability of highly concentrated drug nanosuspensions.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2012 Jan; 101(1):354-62. PubMed ID: 21905035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation, process, and storage strategies for lyophilizates of lipophilic nanoparticulate systems established based on the two models paliperidone palmitate and solid lipid nanoparticles.
    Trenkenschuh E; Savšek U; Friess W
    Int J Pharm; 2021 Sep; 606():120929. PubMed ID: 34303819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization.
    Abdelwahed W; Degobert G; Fessi H
    Int J Pharm; 2006 Feb; 309(1-2):178-88. PubMed ID: 16326053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage.
    Abdelwahed W; Degobert G; Fessi H
    Eur J Pharm Biopharm; 2006 Jun; 63(2):87-94. PubMed ID: 16621490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on stability (I): stability of a monoclonal antibody.
    Abdul-Fattah AM; Truong-Le V; Yee L; Nguyen L; Kalonia DS; Cicerone MT; Pikal MJ
    J Pharm Sci; 2007 Aug; 96(8):1983-2008. PubMed ID: 17286290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying of nanocapsules: impact of annealing on the drying process.
    Abdelwahed W; Degobert G; Fessi H
    Int J Pharm; 2006 Oct; 324(1):74-82. PubMed ID: 16904277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of residual water on the solid-state properties of freeze-dried fibrinogen.
    Wahl V; Leitgeb S; Laggner P; Pichler H; Liebminger A; Khinast J
    Eur J Pharm Biopharm; 2015 Apr; 91():1-8. PubMed ID: 25617832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants.
    Cheow WS; Ng ML; Kho K; Hadinoto K
    Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products.
    Abla KK; Mehanna MM
    Int J Pharm; 2022 Nov; 628():122233. PubMed ID: 36183914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical formulation and process development of freeze-dried products.
    Schwegman JJ; Hardwick LM; Akers MJ
    Pharm Dev Technol; 2005; 10(2):151-73. PubMed ID: 15926665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution.
    Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S
    Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications.
    Picco AS; Ferreira LF; Liberato MS; Mondo GB; Cardoso MB
    Nanomedicine (Lond); 2018 Jan; 13(2):179-190. PubMed ID: 29139338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.