These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 17118523)
1. Residue cluster additivity of thermodynamic stability in the hydrophobic core of mesophile vs. hyperthermophile rubredoxins. LeMaster DM; Hernández G Biophys Chem; 2007 Feb; 125(2-3):483-9. PubMed ID: 17118523 [TBL] [Abstract][Full Text] [Related]
2. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids. LeMaster DM; Tang J; Paredes DI; Hernández G Proteins; 2005 Nov; 61(3):608-16. PubMed ID: 16130131 [TBL] [Abstract][Full Text] [Related]
3. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin. LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids. LeMaster DM; Tang J; Paredes DI; Hernández G Biophys Chem; 2005 Jun; 116(1):57-65. PubMed ID: 15911082 [TBL] [Abstract][Full Text] [Related]
5. Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange. LeMaster DM; Hernández G Chembiochem; 2006 Dec; 7(12):1886-9. PubMed ID: 17068837 [No Abstract] [Full Text] [Related]
6. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation. LeMaster DM; Tang J; Hernández G Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598 [TBL] [Abstract][Full Text] [Related]
7. Additivity in both thermodynamic stability and thermal transition temperature for rubredoxin chimeras via hybrid native partitioning. LeMaster DM; Hernández G Structure; 2005 Aug; 13(8):1153-63. PubMed ID: 16084387 [TBL] [Abstract][Full Text] [Related]
8. Thermostability in rubredoxin and its relationship to mechanical rigidity. Rader AJ Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190 [TBL] [Abstract][Full Text] [Related]
9. Dissecting contributions to the thermostability of Pyrococcus furiosus rubredoxin: beta-sheet chimeras. Eidsness MK; Richie KA; Burden AE; Kurtz DM; Scott RA Biochemistry; 1997 Aug; 36(34):10406-13. PubMed ID: 9265620 [TBL] [Abstract][Full Text] [Related]
10. Redox properties of mesophilic and hyperthermophilic rubredoxins as a function of pressure and temperature. Gillès de Pélichy LD; Smith ET Biochemistry; 1999 Jun; 38(24):7874-80. PubMed ID: 10387028 [TBL] [Abstract][Full Text] [Related]
11. The role of backbone stability near Ala44 in the high reduction potential class of rubredoxins. Tan ML; Kang C; Ichiye T Proteins; 2006 Mar; 62(3):708-14. PubMed ID: 16362979 [TBL] [Abstract][Full Text] [Related]
12. Dispersion interactions govern the strong thermal stability of a protein. Vondrásek J; Kubar T; Jenney FE; Adams MW; Kozísek M; Cerný J; Sklenár V; Hobza P Chemistry; 2007; 13(32):9022-7. PubMed ID: 17696186 [TBL] [Abstract][Full Text] [Related]
13. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin. Hernández G; LeMaster DM Biochemistry; 2001 Dec; 40(48):14384-91. PubMed ID: 11724550 [TBL] [Abstract][Full Text] [Related]
14. Effects of environment on the structure of Pyrococcus furiosus rubredoxin: a molecular dynamics study. Ergenekan CE; Tan ML; Ichiye T Proteins; 2005 Dec; 61(4):823-8. PubMed ID: 16245319 [TBL] [Abstract][Full Text] [Related]
15. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Day MW; Hsu BT; Joshua-Tor L; Park JB; Zhou ZH; Adams MW; Rees DC Protein Sci; 1992 Nov; 1(11):1494-507. PubMed ID: 1303768 [TBL] [Abstract][Full Text] [Related]
16. Role of native-state structure in rubredoxin native-state hydrogen exchange. LeMaster DM; Anderson JS; Hernández G Biochemistry; 2006 Aug; 45(33):9956-63. PubMed ID: 16906754 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms. Bougault CM; Eidsness MK; Prestegard JH Biochemistry; 2003 Apr; 42(15):4357-72. PubMed ID: 12693931 [TBL] [Abstract][Full Text] [Related]
18. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Blake PR; Park JB; Zhou ZH; Hare DR; Adams MW; Summers MF Protein Sci; 1992 Nov; 1(11):1508-21. PubMed ID: 1303769 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin. Grottesi A; Ceruso MA; Colosimo A; Di Nola A Proteins; 2002 Feb; 46(3):287-94. PubMed ID: 11835504 [TBL] [Abstract][Full Text] [Related]
20. Unfolding mechanism of rubredoxin from Pyrococcus furiosus. Cavagnero S; Zhou ZH; Adams MW; Chan SI Biochemistry; 1998 Mar; 37(10):3377-85. PubMed ID: 9521658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]