These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 17118716)
1. A unique error signature for human DNA polymerase nu. Arana ME; Takata K; Garcia-Diaz M; Wood RD; Kunkel TA DNA Repair (Amst); 2007 Feb; 6(2):213-23. PubMed ID: 17118716 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analysis of the unique error signature of human DNA polymerase ν. Arana ME; Potapova O; Kunkel TA; Joyce CM Biochemistry; 2011 Nov; 50(46):10126-35. PubMed ID: 22008035 [TBL] [Abstract][Full Text] [Related]
3. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793 [TBL] [Abstract][Full Text] [Related]
4. Unique error signature of the four-subunit yeast DNA polymerase epsilon. Shcherbakova PV; Pavlov YI; Chilkova O; Rogozin IB; Johansson E; Kunkel TA J Biol Chem; 2003 Oct; 278(44):43770-80. PubMed ID: 12882968 [TBL] [Abstract][Full Text] [Related]
5. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. Sampoli Benítez BA; Arora K; Balistreri L; Schlick T J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064 [TBL] [Abstract][Full Text] [Related]
6. Fidelity of mammalian DNA replication and replicative DNA polymerases. Thomas DC; Roberts JD; Sabatino RD; Myers TW; Tan CK; Downey KM; So AG; Bambara RA; Kunkel TA Biochemistry; 1991 Dec; 30(51):11751-9. PubMed ID: 1751492 [TBL] [Abstract][Full Text] [Related]
7. Phenylalanine 171 is a molecular brake for translesion synthesis across benzo[a]pyrene-guanine adducts by human DNA polymerase kappa. Sassa A; Niimi N; Fujimoto H; Katafuchi A; Grúz P; Yasui M; Gupta RC; Johnson F; Ohta T; Nohmi T Mutat Res; 2011 Jan; 718(1-2):10-7. PubMed ID: 21078407 [TBL] [Abstract][Full Text] [Related]
8. The roles of polymerases ν and θ in replicative bypass of Du H; Wang P; Wu J; He X; Wang Y J Biol Chem; 2020 Apr; 295(14):4556-4562. PubMed ID: 32098870 [TBL] [Abstract][Full Text] [Related]
9. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. Lee CH; Chandani S; Loechler EL J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932 [TBL] [Abstract][Full Text] [Related]
10. The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. Kunkel TA; Alexander PS J Biol Chem; 1986 Jan; 261(1):160-6. PubMed ID: 3941068 [TBL] [Abstract][Full Text] [Related]
11. Novel enzymatic function of DNA polymerase nu in translesion DNA synthesis past major groove DNA-peptide and DNA-DNA cross-links. Yamanaka K; Minko IG; Takata K; Kolbanovskiy A; Kozekov ID; Wood RD; Rizzo CJ; Lloyd RS Chem Res Toxicol; 2010 Mar; 23(3):689-95. PubMed ID: 20102227 [TBL] [Abstract][Full Text] [Related]
12. Low-fidelity DNA synthesis by human DNA polymerase theta. Arana ME; Seki M; Wood RD; Rogozin IB; Kunkel TA Nucleic Acids Res; 2008 Jun; 36(11):3847-56. PubMed ID: 18503084 [TBL] [Abstract][Full Text] [Related]
13. Human DNA polymerase alpha uses a combination of positive and negative selectivity to polymerize purine dNTPs with high fidelity. Beckman J; Kincaid K; Hocek M; Spratt T; Engels J; Cosstick R; Kuchta RD Biochemistry; 2007 Jan; 46(2):448-60. PubMed ID: 17209555 [TBL] [Abstract][Full Text] [Related]
14. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. Kokoska RJ; McCulloch SD; Kunkel TA J Biol Chem; 2003 Dec; 278(50):50537-45. PubMed ID: 14523013 [TBL] [Abstract][Full Text] [Related]
15. Biochemical analysis of active site mutations of human polymerase η. Suarez SC; Beardslee RA; Toffton SM; McCulloch SD Mutat Res; 2013; 745-746():46-54. PubMed ID: 23499771 [TBL] [Abstract][Full Text] [Related]
16. The mutational specificity of DNA polymerases-alpha and -gamma during in vitro DNA synthesis. Kunkel TA J Biol Chem; 1985 Oct; 260(23):12866-74. PubMed ID: 3930505 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity. Zhong X; Pedersen LC; Kunkel TA Nucleic Acids Res; 2008 Jul; 36(12):3892-904. PubMed ID: 18503083 [TBL] [Abstract][Full Text] [Related]
18. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis. Kim J; Song I; Jo A; Shin JH; Cho H; Eoff RL; Guengerich FP; Choi JY Chem Res Toxicol; 2014 Oct; 27(10):1837-52. PubMed ID: 25162224 [TBL] [Abstract][Full Text] [Related]
19. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ. Tellier-Lebegue C; Dizet E; Ma E; Veaute X; Coïc E; Charbonnier JB; Maloisel L PLoS Genet; 2017 Dec; 13(12):e1007119. PubMed ID: 29281621 [TBL] [Abstract][Full Text] [Related]
20. The frameshift infidelity of human DNA polymerase lambda. Implications for function. Bebenek K; Garcia-Diaz M; Blanco L; Kunkel TA J Biol Chem; 2003 Sep; 278(36):34685-90. PubMed ID: 12829698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]