BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 17118731)

  • 1. Formaldehyde and glutaraldehyde and nasal cytotoxicity: case study within the context of the 2006 IPCS Human Framework for the Analysis of a cancer mode of action for humans.
    McGregor D; Bolt H; Cogliano V; Richter-Reichhelm HB
    Crit Rev Toxicol; 2006; 36(10):821-35. PubMed ID: 17118731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis of F344 rat nasal epithelium suggests that the lack of carcinogenic response to glutaraldehyde is due to its greater toxicity compared to formaldehyde.
    Hester SD; Barry WT; Zou F; Wolf DC
    Toxicol Pathol; 2005; 33(4):415-24. PubMed ID: 16036858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action in relevance of rodent liver tumors to human cancer risk.
    Holsapple MP; Pitot HC; Cohen SM; Boobis AR; Klaunig JE; Pastoor T; Dellarco VL; Dragan YP
    Toxicol Sci; 2006 Jan; 89(1):51-6. PubMed ID: 16221960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound.
    Andersen ME; Clewell HJ; Bermudez E; Dodd DE; Willson GA; Campbell JL; Thomas RS
    Toxicol Sci; 2010 Dec; 118(2):716-31. PubMed ID: 20884683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide.
    McCarroll N; Keshava N; Cimino M; Chu M; Dearfield K; Keshava C; Kligerman A; Owen R; Protzel A; Putzrath R; Schoeny R
    Environ Mol Mutagen; 2008 Mar; 49(2):117-31. PubMed ID: 18240158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is inhalation exposure to formaldehyde a biologically plausible cause of lymphohematopoietic malignancies?
    Pyatt D; Natelson E; Golden R
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):119-33. PubMed ID: 18440686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity.
    Müller L; Gocke E; Lavé T; Pfister T
    Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IPCS framework for analyzing the relevance of a cancer mode of action for humans.
    Boobis AR; Cohen SM; Dellarco V; McGregor D; Meek ME; Vickers C; Willcocks D; Farland W
    Crit Rev Toxicol; 2006; 36(10):781-92. PubMed ID: 17118728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin.
    Int J Toxicol; 2007; 26 Suppl 1():3-106. PubMed ID: 17365137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carcinogenic mode of action of folpet in mice and evaluation of its relevance to humans.
    Cohen SM; Gordon EB; Singh P; Arce GT; Nyska A
    Crit Rev Toxicol; 2010 Jul; 40(6):531-45. PubMed ID: 20521864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity.
    Heck Hd; Casanova M
    Regul Toxicol Pharmacol; 2004 Oct; 40(2):92-106. PubMed ID: 15450713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rodent carcinogenicity of peroxisome proliferators and issues on human relevance.
    Lai DY
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2004 May; 22(1):37-55. PubMed ID: 15845221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically motivated computational modeling of formaldehyde carcinogenicity in the F344 rat.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2003 Oct; 75(2):432-47. PubMed ID: 12857938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde.
    Costa S; Coelho P; Costa C; Silva S; Mayan O; Santos LS; Gaspar J; Teixeira JP
    Toxicology; 2008 Oct; 252(1-3):40-8. PubMed ID: 18721846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A parallelogram approach for safety evaluation of ingested acetaldehyde.
    Morris JB; Robinson DE; Vollmuth TA; Brown RP; Domeyer BE
    Regul Toxicol Pharmacol; 1996 Dec; 24(3):251-63. PubMed ID: 8975755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.