BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17118883)

  • 1. Preparation and release of model drugs from thermally sensitive poly(N-isopropylacrylamide) based macrospheres.
    Lewis G; Coughlan DC; Lane ME; Corrigan OI
    J Microencapsul; 2006 Sep; 23(6):677-85. PubMed ID: 17118883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels.
    Coughlan DC; Quilty FP; Corrigan OI
    J Control Release; 2004 Jul; 98(1):97-114. PubMed ID: 15245893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release kinetics of benzoic acid and its sodium salt from a series of poly(N-isopropylacrylamide) matrices with various percentage crosslinking.
    Coughlan DC; Corrigan OI
    J Pharm Sci; 2008 Jan; 97(1):318-30. PubMed ID: 17683058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems.
    Coughlan DC; Corrigan OI
    Int J Pharm; 2006 Apr; 313(1-2):163-74. PubMed ID: 16517105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release.
    Chen H; Gu Y; Hub Y; Qian Z
    PDA J Pharm Sci Technol; 2007; 61(4):303-13. PubMed ID: 17933211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin.
    Kim AR; Lee SL; Park SN
    Int J Biol Macromol; 2018 Oct; 118(Pt A):731-740. PubMed ID: 29940230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: the size of microgels dictates the pulsatile release mechanism.
    Fundueanu G; Constantin M; Asmarandei I; Bucatariu S; Harabagiu V; Ascenzi P; Simionescu BC
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):614-23. PubMed ID: 23562533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles.
    Fundueanu G; Constantin M; Ascenzi P
    Acta Biomater; 2009 Jan; 5(1):363-73. PubMed ID: 18723416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels.
    Wu JY; Liu SQ; Heng PW; Yang YY
    J Control Release; 2005 Feb; 102(2):361-72. PubMed ID: 15653157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks.
    Brahima S; Boztepe C; Kunkul A; Yuceer M
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():425-432. PubMed ID: 28415481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release.
    Rodkate N; Rutnakornpituk M
    Carbohydr Polym; 2016 Oct; 151():251-259. PubMed ID: 27474565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel.
    Zhang XZ; Jo Lewis P; Chu CC
    Biomaterials; 2005 Jun; 26(16):3299-309. PubMed ID: 15603825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release.
    Ma C; Shi Y; Pena DA; Peng L; Yu G
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7376-80. PubMed ID: 25950422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically controlled release of benzoic acid from poly(3,4-ethylenedioxythiophene)/alginate matrix: effect of conductive poly(3,4-ethylenedioxythiophene) morphology.
    Paradee N; Sirivat A
    J Phys Chem B; 2014 Aug; 118(31):9263-71. PubMed ID: 25059579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of poly(N-isopropylacrylamide)-modified poly(2-hydroxyethyl acrylate) hydrogels by interpenetrating polymer networks for sustained drug release.
    Liu YY; Lü J; Shao YH
    Macromol Biosci; 2006 Jun; 6(6):452-8. PubMed ID: 16761277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled drug release from hydrogel nanoparticle networks.
    Huang G; Gao J; Hu Z; St John JV; Ponder BC; Moro D
    J Control Release; 2004 Feb; 94(2-3):303-11. PubMed ID: 14744482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.
    Liu SQ; Tong YW; Yang YY
    Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature sensitive poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] for improved drug release.
    Zhang JT; Huang SW; Liu J; Zhuo RX
    Macromol Biosci; 2005 Mar; 5(3):192-6. PubMed ID: 15768437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.