BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17119100)

  • 21. Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity.
    Cao S; Chen SJ
    J Mol Biol; 2007 Mar; 367(3):909-24. PubMed ID: 17276459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting RNA pseudoknot folding thermodynamics.
    Cao S; Chen SJ
    Nucleic Acids Res; 2006; 34(9):2634-52. PubMed ID: 16709732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
    Nixon PL; Giedroc DP
    J Mol Biol; 2000 Feb; 296(2):659-71. PubMed ID: 10669615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency.
    Marrone A; Stevens D; Vulliamy T; Dokal I; Mason PJ
    Blood; 2004 Dec; 104(13):3936-42. PubMed ID: 15319288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HU protein employs similar mechanisms of minor-groove recognition in binding to different B-DNA sites: demonstration by Raman spectroscopy.
    Serban D; Benevides JM; Thomas GJ
    Biochemistry; 2003 Jun; 42(24):7390-9. PubMed ID: 12809494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Telomerase RNA mutated in autosomal dyskeratosis congenita reconstitutes a weakly active telomerase enzyme defective in telomere elongation.
    Cerone MA; Ward RJ; Londoño-Vallejo JA; Autexier C
    Cell Cycle; 2005 Apr; 4(4):585-9. PubMed ID: 15753647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the structure and melting behavior of the loop I fragment of ColE1 RNA I.
    Lin TH; Lin HD; Yang JL; Kaberdin VR; Lin-Chao S; Huang TH
    J Biomol Struct Dyn; 1996 Feb; 13(4):677-85. PubMed ID: 8906888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unusual nucleotide conformations in GNRA and UNCG type tetraloop hairpins: evidence from Raman markers assignments.
    Leulliot N; Baumruk V; Abdelkafi M; Turpin PY; Namane A; Gouyette C; Huynh-Dinh T; Ghomi M
    Nucleic Acids Res; 1999 Mar; 27(5):1398-404. PubMed ID: 9973632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Common structural features of UUCG and UACG tetraloops in very short hairpins determined by UV absorption, Raman, IR and NMR spectroscopies.
    Abdelkafi M; Ghomi M; Turpin PY; Baumruk V; Hervé du Penhoat C; Lampire O; Bouchemal-Chibani N; Goyer P; Namane A; Gouyette C; Huynh-Dinh T; Bednárová L
    J Biomol Struct Dyn; 1997 Apr; 14(5):579-93. PubMed ID: 9130080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.
    Biyun S; Cho SS; Thirumalai D
    J Am Chem Soc; 2011 Dec; 133(50):20634-43. PubMed ID: 22082261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function.
    Theimer CA; Blois CA; Feigon J
    Mol Cell; 2005 Mar; 17(5):671-82. PubMed ID: 15749017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disease-associated human telomerase RNA variants show loss of function for telomere synthesis without dominant-negative interference.
    Errington TM; Fu D; Wong JM; Collins K
    Mol Cell Biol; 2008 Oct; 28(20):6510-20. PubMed ID: 18710936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.
    Chen Y; Eldho NV; Dayie TK; Carey PR
    Biochemistry; 2010 Apr; 49(16):3427-35. PubMed ID: 20225830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of triple helical poly(U).poly(A).poly(U) studied by Raman spectroscopy.
    O'Connor T; Bina M
    J Biomol Struct Dyn; 1984 Dec; 2(3):615-25. PubMed ID: 6400914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a new RNA.RNA interaction site for human telomerase RNA (hTR): structural implications for hTR accumulation and a dyskeratosis congenita point mutation.
    Ren X; Gavory G; Li H; Ying L; Klenerman D; Balasubramanian S
    Nucleic Acids Res; 2003 Nov; 31(22):6509-15. PubMed ID: 14602909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the G.T mismatch on backbone and sugar conformations of Z-DNA and B-DNA: analysis by Raman spectroscopy of crystal and solution structures of d(CGCGTG) and d(CGCGCG).
    Benevides JM; Wang AH; van der Marel GA; van Boom JH; Thomas GJ
    Biochemistry; 1989 Jan; 28(1):304-10. PubMed ID: 2706254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.
    Vulliamy T; Marrone A; Goldman F; Dearlove A; Bessler M; Mason PJ; Dokal I
    Nature; 2001 Sep; 413(6854):432-5. PubMed ID: 11574891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA.
    Chen G; Wen JD; Tinoco I
    RNA; 2007 Dec; 13(12):2175-88. PubMed ID: 17959928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dyskeratosis congenita and telomerase.
    Bessler M; Wilson DB; Mason PJ
    Curr Opin Pediatr; 2004 Feb; 16(1):23-8. PubMed ID: 14758110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defects in mTR stability and telomerase activity produced by the Dkc1 A353V mutation in dyskeratosis congenita are rescued by a peptide from the dyskerin TruB domain.
    Machado-Pinilla R; Carrillo J; Manguan-Garcia C; Sastre L; Mentzer A; Gu BW; Mason PJ; Perona R
    Clin Transl Oncol; 2012 Oct; 14(10):755-63. PubMed ID: 22855157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.