These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 17119416)

  • 41. Repair of osteochondral defects with a new porous synthetic polymer scaffold.
    Nagura I; Fujioka H; Kokubu T; Makino T; Sumi Y; Kurosaka M
    J Bone Joint Surg Br; 2007 Feb; 89(2):258-64. PubMed ID: 17322449
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Subpedicle connective tissue graft versus guided tissue regeneration with bioabsorbable membrane in the treatment of human gingival recession defects.
    Trombelli L; Scabbia A; Tatakis DN; Calura G
    J Periodontol; 1998 Nov; 69(11):1271-7. PubMed ID: 9848537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering.
    Kang SW; Jeon O; Kim BS
    Tissue Eng; 2005; 11(3-4):438-47. PubMed ID: 15869422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histomorphometric comparison of three bioabsorbable GTR barrier membranes in the canine model.
    Gineste L; Gineste M; Bluche L; Guilhem A; Elefterion A; Frayssinet P; Duran D; Wang HL
    Int J Periodontics Restorative Dent; 2005 Feb; 25(1):61-71. PubMed ID: 15736779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of a collagen membrane combined with a porous titanium membrane on exophytic new bone formation in a rabbit calvarial model.
    Shin SI; Herr Y; Kwon YH; Chung JH
    J Periodontol; 2013 Jan; 84(1):110-6. PubMed ID: 22509754
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fibrous capsule formation in response to ultrahigh molecular weight polyethylene treated with peptides that influence adhesion.
    Johnson R; Harrison D; Tucci M; Tsao A; Lemos M; Puckett A; Hughes JL; Benghuzzi H
    Biomed Sci Instrum; 1997; 34():47-52. PubMed ID: 9603011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties.
    Sharkawy AA; Klitzman B; Truskey GA; Reichert WM
    J Biomed Mater Res; 1997 Dec; 37(3):401-12. PubMed ID: 9368145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.
    Valence Sd; Tille JC; Chaabane C; Gurny R; Bochaton-Piallat ML; Walpoth BH; Möller M
    Eur J Pharm Biopharm; 2013 Sep; 85(1):78-86. PubMed ID: 23958319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo behaviour of a biodegradable poly(trimethylene carbonate) barrier membrane: a histological study in rats.
    Van Leeuwen AC; Van Kooten TG; Grijpma DW; Bos RR
    J Mater Sci Mater Med; 2012 Aug; 23(8):1951-9. PubMed ID: 22569734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intravenous injections of soluble drag-reducing polymers reduce foreign body reaction to implants.
    Marascalco PJ; Blair HC; Nieponice A; Robinson LJ; Kameneva MV
    ASAIO J; 2009; 55(5):503-8. PubMed ID: 19625951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, Characterization, and Osteoblastic Cell Culture of Poly(L-co-D,L-lactide-co-trimethylene carbonate) Scaffolds.
    Messias AD; Martins KF; Motta AC; Duek EA
    Int J Biomater; 2014; 2014():501789. PubMed ID: 25053947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphometrical analysis of multinucleated giant cells in subdermal implants of poly-lactic acid in rats.
    Maluf-Meiken LC; Silva DR; Duek EA; Alberto-Rincon MC
    J Mater Sci Mater Med; 2006 May; 17(5):481-5. PubMed ID: 16688589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biocompatibility evaluation of a new bioresorbable pin for membrane fixation.
    Cestari TM; de Oliveira RC; Sanada JT; Garlet GP; Taga R; Granjeiro JM
    Braz Dent J; 2010; 21(6):482-90. PubMed ID: 21271037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resorption rates of 2 commercially available bioresorbable membranes. A histomorphometric study in a rabbit model.
    Miller N; Penaud J; Foliguet B; Membre H; Ambrosini P; Plombas M
    J Clin Periodontol; 1996 Dec; 23(12):1051-9. PubMed ID: 8997647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tissue response to a new type of biomaterial implanted subcutaneously in rats.
    Boennelycke M; Christensen L; Nielsen LF; Everland H; Lose G
    Int Urogynecol J; 2011 Feb; 22(2):191-6. PubMed ID: 20838988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alternative Cutaneous Substitutes Based on Poly(l-
    Komatsu D; Hausen MA; Eri RY; Leal V; Pedrini F; Yaksic C; Alves TFR; Chaud MV; Fanelli C; Noronha I; Duek EAR
    ACS Omega; 2019 Nov; 4(19):18317-18326. PubMed ID: 31720533
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular reactions to polylactide-based sponge and collagen gel in subcutaneous tissue.
    Taira M; Araki Y; Nakao H; Takahashi J; Hyon SH; Tsutsumi S
    J Oral Rehabil; 2003 Jan; 30(1):106-9. PubMed ID: 12485393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.