BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17119998)

  • 1. The efficacy of acrylic acid grafting and arginine-glycine-aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits.
    Park BW; Yang HS; Baek SH; Park K; Han DK; Lee TS
    Graefes Arch Clin Exp Ophthalmol; 2007 Jun; 245(6):855-62. PubMed ID: 17119998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of early fibrovascular proliferation according to orbital implant in orbital floor fracture reconstruction.
    Lee H; Baek S
    J Craniofac Surg; 2012 Sep; 23(5):1518-23. PubMed ID: 22976649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sucralfate and basic fibroblast growth factor on fibrovascular ingrowth into hydroxyapatite and porous polyethylene alloplastic implants using a novel rabbit model.
    Rubin PA; Nicaeus TE; Warner MA; Remulla HD
    Ophthalmic Plast Reconstr Surg; 1997 Mar; 13(1):8-17. PubMed ID: 9076777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of synthetic bone glass particulate on the fibrovascularization of porous polyethylene orbital implants.
    Choi HY; Lee JE; Park HJ; Oum BS
    Ophthalmic Plast Reconstr Surg; 2006; 22(2):121-5. PubMed ID: 16550057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of experimental porous silicone implants and porous silicone implants.
    Son J; Kim CS; Yang J
    Graefes Arch Clin Exp Ophthalmol; 2012 Jun; 250(6):879-85. PubMed ID: 22202952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous polyethylene implant fibrovascularization rate is affected by tissue wrapping, agarose coating, and insertion site.
    Soparkar CN; Wong JF; Patrinely JR; Davidson JK; Appling D
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):330-6. PubMed ID: 11021381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary placement of a titanium motility post in a porous polyethylene orbital implant: animal model with quantitative assessment of fibrovascular ingrowth and vascular density.
    Hsu WC; Green JP; Spilker MH; Rubin PA
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):370-9. PubMed ID: 11021387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of basic fibroblast growth factor on fibrovascular ingrowth into porous polyethylene anophthalmic socket implants.
    Park WC; Han SK; Kim NJ; Chung TY; Khwarg SI
    Korean J Ophthalmol; 2005 Mar; 19(1):1-8. PubMed ID: 15929480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants wrapped with acellular dermis.
    Thakker MM; Fay AM; Pieroth L; Rubin PA
    Ophthalmic Plast Reconstr Surg; 2004 Sep; 20(5):368-73. PubMed ID: 15377904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue ingrowth into perforated polymethylmethacrylate orbital implants: an experimental study.
    Miyashita D; Chahud F; da Silva GE; de Albuquerque VB; Garcia DM; Velasco e Cruz AA
    Ophthalmic Plast Reconstr Surg; 2013; 29(3):160-3. PubMed ID: 23446301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrovascularization of intraorbital hydroxyapatite-coated alumina sphere in rabbits.
    Chung WS; Song SJ; Lee SH; Kim EA
    Korean J Ophthalmol; 2005 Mar; 19(1):9-17. PubMed ID: 15929481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging assessment of fibrovascular ingrowth into porous polyethylene orbital implants.
    Choi HY; Lee JS; Park HJ; Oum BS; Kim HJ; Park DY
    Clin Exp Ophthalmol; 2006; 34(4):354-9. PubMed ID: 16764656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrovascular ingrowth in porous ocular implants: the effect of material composition, porosity, growth factors, and coatings.
    Bigham WJ; Stanley P; Cahill JM; Curran RW; Perry AC
    Ophthalmic Plast Reconstr Surg; 1999 Sep; 15(5):317-25. PubMed ID: 10511211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model.
    Gayre GS; Lipham W; Dutton JJ
    Ophthalmic Plast Reconstr Surg; 2002 Jul; 18(4):275-80. PubMed ID: 12142760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate of vascularization and exposure of silicone-capped porous polyethylene spherical implants: an animal model.
    Kalwerisky K; Mihora L; Czyz CN; Foster JA; Holck DE
    Ophthalmic Plast Reconstr Surg; 2013; 29(5):350-6. PubMed ID: 23811596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model.
    Jordan DR; Brownstein S; Dorey M; Yuen VH; Gilberg S
    Ophthalmic Plast Reconstr Surg; 2004 Mar; 20(2):136-43. PubMed ID: 15083083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants.
    Rubin PA; Popham JK; Bilyk JR; Shore JW
    Ophthalmic Plast Reconstr Surg; 1994 Jun; 10(2):96-103. PubMed ID: 7522048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrovascular ingrowth into porous polyethylene orbital implants (Medpor) after modified evisceration.
    Huang D; Xu B; Yang Z; Xu B; Lin X; Yang X; Zhao J
    Ophthalmic Plast Reconstr Surg; 2015; 31(2):139-44. PubMed ID: 25025383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite and calcium phosphate coatings on aluminium oxide orbital implants.
    Jordan DR; Brownstein S; Gilberg S; Coupal D; Kim S; Mawn L
    Can J Ophthalmol; 2002 Feb; 37(1):7-13. PubMed ID: 11865960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyapatite implant wrapping materials: analysis of fibrovascular ingrowth in an animal model.
    Klapper SR; Jordan DR; Punja K; Brownstein S; Gilberg SM; Mawn LA; Grahovac SZ
    Ophthalmic Plast Reconstr Surg; 2000 Jul; 16(4):278-85. PubMed ID: 10923975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.