These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17120055)

  • 81. Latitudinal patterns of herbivore pressure in a temperate herb support the biotic interactions hypothesis.
    Baskett CA; Schemske DW
    Ecol Lett; 2018 Apr; 21(4):578-587. PubMed ID: 29466840
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant-herbivore interactions.
    Tomas F; Abbott JM; Steinberg C; Balk M; Williams SL; Stachowicz JJ
    Ecology; 2011 Sep; 92(9):1807-17. PubMed ID: 21939077
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Herbivore-induced infochemicals influence foraging behaviour in two intertidal predators.
    Coleman RA; Ramchunder SJ; Davis KM; Moody AJ; Foggo A
    Oecologia; 2007 Mar; 151(3):454-63. PubMed ID: 17106720
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Tissue type matters: selective herbivory on different life history stages of an isomorphic alga.
    Thornber C; Stachowicz JJ; Gaines S
    Ecology; 2006 Sep; 87(9):2255-63. PubMed ID: 16995626
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The effects of sea urchin grazing and drift algal blooms on a subtropical seagrass bed community.
    Maciá S
    J Exp Mar Biol Ecol; 2000 Mar; 246(1):53-67. PubMed ID: 10699218
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds.
    Tarquinio F; Attlan O; Vanderklift MA; Berry O; Bissett A
    Front Microbiol; 2021; 12():703014. PubMed ID: 34621247
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Herbivore specific induction of silica-based plant defences.
    Massey FP; Ennos AR; Hartley SE
    Oecologia; 2007 Jul; 152(4):677-83. PubMed ID: 17375331
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Meta-Analysis of Reciprocal Linkages between Temperate Seagrasses and Waterfowl with Implications for Conservation.
    Kollars NM; Henry AK; Whalen MA; Boyer KE; Cusson M; Eklöf JS; Hereu CM; Jorgensen P; Kiriakopolos SL; Reynolds PL; Tomas F; Turner MS; Ruesink JL
    Front Plant Sci; 2017; 8():2119. PubMed ID: 29312384
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Increased extent of waterfowl grazing lengthens the recovery time of a colonizing seagrass (
    O'Dea CM; Lavery PS; Webster CL; McMahon KM
    Front Plant Sci; 2022; 13():947109. PubMed ID: 36105704
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Associational effects of plant defences in relation to within- and between-patch food choice by a mammalian herbivore: neighbour contrast susceptibility and defence.
    Alm Bergvall U; Rautio P; Kesti K; Tuomi J; Leimar O
    Oecologia; 2006 Mar; 147(2):253-60. PubMed ID: 16187104
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Differential Leaf Age-Dependent Thermal Plasticity in the Keystone Seagrass
    Ruocco M; De Luca P; Marín-Guirao L; Procaccini G
    Front Plant Sci; 2019; 10():1556. PubMed ID: 31850036
    [No Abstract]   [Full Text] [Related]  

  • 92. Nipped in the bud: mesograzer feeding preference contributes to kelp decline.
    O'Brien JM; Scheibling RE
    Ecology; 2016 Jul; 97(7):1873-1886. PubMed ID: 27859169
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Understanding the sexual recruitment of one of the oldest and largest organisms on Earth, the seagrass Posidonia oceanica.
    Guerrero-Meseguer L; Sanz-Lázaro C; Marín A
    PLoS One; 2018; 13(11):e0207345. PubMed ID: 30444902
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Geographic variation in feeding preference of a generalist herbivore: the importance of seaweed chemical defenses.
    McCarty AT; Sotka EE
    Oecologia; 2013 Aug; 172(4):1071-83. PubMed ID: 23263529
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Nutrition of marine mesograzers: integrating feeding behavior, nutrient intake and performance of an herbivorous amphipod.
    Machado GBO; Leite FPP; Sotka EE
    PeerJ; 2018; 6():e5929. PubMed ID: 30430042
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Sublethal effects of a rapidly spreading native alga on a key herbivore.
    Bradley DJ; Boada J; Gladstone W; Glasby TM; Gribben PE
    Ecol Evol; 2021 Sep; 11(18):12605-12616. PubMed ID: 34594524
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Age-specific allocation of glucosinolates within plant reproductive tissues.
    Bellec L; Cortesero AM; Marnet N; Faure S; Hervé MR
    Plant Sci; 2023 Jun; 331():111690. PubMed ID: 36965631
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Quantifying the influence of small omnivorous fishes on seagrass epiphyte load.
    Gilby BL; Henderson CJ; Tibbetts IR; Burfeind DD
    J Fish Biol; 2016 Sep; 89(3):1905-12. PubMed ID: 27456225
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The movement ecology of seagrasses.
    McMahon K; van Dijk KJ; Ruiz-Montoya L; Kendrick GA; Krauss SL; Waycott M; Verduin J; Lowe R; Statton J; Brown E; Duarte C
    Proc Biol Sci; 2014 Nov; 281(1795):. PubMed ID: 25297859
    [TBL] [Abstract][Full Text] [Related]  

  • 100. PharmEcology: A pharmacological approach to understanding plant-herbivore interactions: an introduction to the symposium.
    Forbey JS; Foley WJ
    Integr Comp Biol; 2009 Sep; 49(3):267-73. PubMed ID: 21665819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.