BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 17120524)

  • 1. Phytoremediation of selenium using subsurface-flow constructed wetland.
    Azaizeh H; Salhani N; Sebesvari Z; Shardendu S; Emons H
    Int J Phytoremediation; 2006; 8(3):187-98. PubMed ID: 17120524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland.
    Shardendu ; Salhani N; Boulyga SF; Stengel E
    Chemosphere; 2003 Mar; 50(8):967-73. PubMed ID: 12531701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.
    Lin ZQ; Terry N; Gao S; Mohamed S; Ye ZH
    Int J Phytoremediation; 2010 Mar; 12(3):255-67. PubMed ID: 20734620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):404-14. PubMed ID: 18214580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.
    Türker OC; Böcük H; Yakar A
    J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrous oxide emission from polyculture constructed wetlands: effect of plant species.
    Wang Y; Inamori R; Kong H; Xu K; Inamori Y; Kondo T; Zhang J
    Environ Pollut; 2008 Mar; 152(2):351-60. PubMed ID: 17655987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus retention and fractionation in an eutrophic wetland: A one-year mesocosms experiment under fluctuating flooding conditions.
    Tercero MDC; Álvarez-Rogel J; Conesa HM; Párraga-Aguado I; González-Alcaraz MN
    J Environ Manage; 2017 Apr; 190():197-207. PubMed ID: 28049089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR analysis of the presence and location of Mycobacterium avium in a constructed reed bed, with implications for avian tuberculosis control.
    Drewe JA; Mwangi D; Donoghue HD; Cromie RL
    FEMS Microbiol Ecol; 2009 Feb; 67(2):320-8. PubMed ID: 19049499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexachlorobenzene dechlorination in constructed wetland mesocosms.
    Zhou Y; Tigane T; Li X; Truu M; Truu J; Mander U
    Water Res; 2013 Jan; 47(1):102-10. PubMed ID: 23089357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater.
    Calheiros CS; Rangel AO; Castro PM
    Water Res; 2007 Apr; 41(8):1790-8. PubMed ID: 17320926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of plant species on water quality at the outlet of a sludge treatment wetland.
    Gagnon V; Chazarenc F; Kõiv M; Brisson J
    Water Res; 2012 Oct; 46(16):5305-15. PubMed ID: 22828383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia.
    Cui H; Hense BA; Müller J; Schröder P
    Chemosphere; 2015 Sep; 134():307-12. PubMed ID: 25966936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.).
    Gao T; Shi XY
    Arch Microbiol; 2018 Aug; 200(6):869-876. PubMed ID: 29455240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the diversity of root-associated bacteria in Phragmites australis and Typha angustifolia L. in artificial wetlands.
    Li YH; Zhu JN; Liu QF; Liu Y; Liu M; Liu L; Zhang Q
    World J Microbiol Biotechnol; 2013 Aug; 29(8):1499-508. PubMed ID: 23504190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Optimization of nitrogen and phosphorus removal in vertical subsurface flow constructed wetlands by using polypropylene pellet as part of substrate].
    Tang XQ; Li JZ; Li XJ; Liu XG; Huang SL
    Huan Jing Ke Xue; 2008 May; 29(5):1284-8. PubMed ID: 18624194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.