These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17120556)

  • 1. Impact of redox conditions on arsenic mobilization from tailings in a wetland with neutral drainage.
    Beauchemin S; Kwong YT
    Environ Sci Technol; 2006 Oct; 40(20):6297-303. PubMed ID: 17120556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations.
    Hashimoto Y; Kanke Y
    Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils.
    Shaheen SM; Rinklebe J; Frohne T; White JR; DeLaune RD
    Chemosphere; 2016 May; 150():740-748. PubMed ID: 26746419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate enhanced abiotic and biotic arsenic mobilization in the wetland rhizosphere.
    Zhang Z; Moon HS; Myneni SCB; Jaffé PR
    Chemosphere; 2017 Nov; 187():130-139. PubMed ID: 28846968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA
    J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation.
    Jeong HY; Han YS; Hayes KF
    Environ Sci Technol; 2010 Feb; 44(3):955-61. PubMed ID: 20041638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron and arsenic cycling in intertidal surface sediments during wetland remediation.
    Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2011 Mar; 45(6):2179-85. PubMed ID: 21322553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems.
    Cheng H; Hu Y; Luo J; Xu B; Zhao J
    J Hazard Mater; 2009 Jun; 165(1-3):13-26. PubMed ID: 19070955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: nanoSIMS and X-ray adsorption spectroscopy evidences.
    Al-Sid-Cheikh M; Pédrot M; Dia A; Guenet H; Vantelon D; Davranche M; Gruau G; Delhaye T
    Sci Total Environ; 2015 May; 515-516():118-28. PubMed ID: 25704268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH and phosphate on metal distribution with emphasis on As speciation and mobilization in soils from a lead smelting site.
    Impellitteri CA
    Sci Total Environ; 2005 Jun; 345(1-3):175-90. PubMed ID: 15919538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings.
    Roussel C; Néel C; Bril H
    Sci Total Environ; 2000 Dec; 263(1-3):209-19. PubMed ID: 11194154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage.
    Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F
    Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic contamination and speciation in surrounding waters of three old cinnabar mines.
    Larios R; Fernández-Martínez R; Silva V; Loredo J; Rucandio I
    J Environ Monit; 2012 Feb; 14(2):531-42. PubMed ID: 22139034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.