BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17120566)

  • 1. Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance.
    Wilson KL; Birks JW
    Environ Sci Technol; 2006 Oct; 40(20):6361-7. PubMed ID: 17120566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ultraviolet absorbance, chemiluminescence, and DOAS instruments for ambient ozone monitoring.
    Williams EJ; Fehsenfeld FC; Jobson BT; Kuster WC; Goldan PD; Stutz J; McClenny WA
    Environ Sci Technol; 2006 Sep; 40(18):5755-62. PubMed ID: 17007137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants.
    Kleindienst TE; Hudgens EE; Smith DF; McElroy FF; Bufalini JJ
    Air Waste; 1993 Feb; 43(2):213-22. PubMed ID: 15739516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field testing of new-technology ambient air ozone monitors.
    Ollison WM; Crow W; Spicer CW
    J Air Waste Manag Assoc; 2013 Jul; 63(7):855-63. PubMed ID: 23926854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic UV absorption spectrometry observed with a liquid core waveguide as a sensor technique for monitoring ozone in water.
    Le T; Tao S
    Analyst; 2011 Aug; 136(16):3335-42. PubMed ID: 21743914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A re-examination of ambient air ozone monitor interferences.
    Spicer CW; Joseph DW; Ollison WM
    J Air Waste Manag Assoc; 2010 Nov; 60(11):1353-64. PubMed ID: 21141429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development, testing, and deployment of an air sampling manifold for spiking elemental and oxidized mercury during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX).
    Finley BD; Jaffe DA; Call K; Lyman S; Gustin MS; Peterson C; Miller M; Lyman T
    Environ Sci Technol; 2013 Jul; 47(13):7277-84. PubMed ID: 23441676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature Personal Ozone Monitor Based on UV Absorbance.
    Andersen PC; Williford CJ; Birks JW
    Anal Chem; 2010 Oct; 82(19):7924-7928. PubMed ID: 21461365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field comparison of passive samplers versus UV-photometric analyser to measure surface ozone in a Mediterranean area.
    Delgado Saborit JM; Esteve Cano VJ
    J Environ Monit; 2007 Jun; 9(6):610-5. PubMed ID: 17554433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites.
    Leston AR; Ollison WM
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.
    Nawahda A
    Environ Monit Assess; 2015 Aug; 187(8):485. PubMed ID: 26138853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of atmospheric ozone by cavity ring-down spectroscopy.
    Washenfelder RA; Wagner NL; Dube WP; Brown SS
    Environ Sci Technol; 2011 Apr; 45(7):2938-44. PubMed ID: 21366216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of microenvironmental ozone concentrations in Durham, North Carolina, using a 2B Technologies 205 Federal Equivalent Method monitor and an interference-free 2B Technologies 211 monitor.
    Johnson T; Capel J; Ollison W
    J Air Waste Manag Assoc; 2014 Mar; 64(3):360-71. PubMed ID: 24701694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground-based zenith sky abundances and in situ gas cross sections for ozone and nitrogen dioxide with the Earth Observing System Aura Ozone Monitoring Instrument.
    Dobber M; Dirksen R; Voors R; Mount GH; Levelt P
    Appl Opt; 2005 May; 44(14):2846-56. PubMed ID: 15943338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of the validity and reproducibility of passive ozone monitors].
    Cortez-Lugo M; Romieu I; Palazuelos-Rendón E; Hernández-Avila M
    Salud Publica Mex; 1995; 37(3):219-23. PubMed ID: 7676348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of colorimetric ozone detection papers with high ultraviolet resistance using ultraviolet absorbers.
    Miwa T; Maruo YY; Akaoka K; Kunioka T; Nakamura J
    J Air Waste Manag Assoc; 2009 Jul; 59(7):801-8. PubMed ID: 19645264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping tropospheric ozone profiles from an airborne ultraviolet-visible spectrometer.
    Liu X; Sioris CE; Chance K; Kurosu TP; Newchurch MJ; Martin RV; Palmer PI
    Appl Opt; 2005 Jun; 44(16):3312-9. PubMed ID: 15943268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozone measurement with silica cartidges and HRGC-MS analysis.
    Cecinato A; Di Palo V; Possanzini M
    Fresenius J Anal Chem; 2001 Apr; 369(7-8):652-6. PubMed ID: 11371066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of relative humidity and ozone on the sampling of volatile organic compounds on carbotrap/carbosieve adsorbents.
    Palluau F; Mirabel P; Millet M
    Environ Monit Assess; 2007 Apr; 127(1-3):177-87. PubMed ID: 16897502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration measurements of ozone in the 1200-300ppbv range: an intercomparison between the BNM ultraviolet standard and infrared methods.
    Dufour G; Valentin A; Henry A; Hurtmans D; Camy-Peyret C
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3345-52. PubMed ID: 15561619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.