BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17120652)

  • 1. Integrated modelling of two xenobiotic organic compounds.
    Lindblom E; Gernaey KV; Henze M; Mikkelsen PS
    Water Sci Technol; 2006; 54(6-7):213-21. PubMed ID: 17120652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater.
    Baun A; Eriksson E; Ledin A; Mikkelsen PS
    Sci Total Environ; 2006 Oct; 370(1):29-38. PubMed ID: 16814849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of xenobiotic organic compounds in wastewater treatment plants.
    Byrns G
    Water Res; 2001 Jul; 35(10):2523-33. PubMed ID: 11394788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the fate of organic micropollutants in stormwater ponds.
    Vezzaro L; Eriksson E; Ledin A; Mikkelsen PS
    Sci Total Environ; 2011 Jun; 409(13):2597-606. PubMed ID: 21496881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic experiments with high bisphenol-A concentrations modelled with an ASM model extended to include a separate XOC degrading microorganism.
    Lindblom E; Press-Kristensen K; Vanrolleghem PA; Mikkelsen PS; Henze M
    Water Res; 2009 Jul; 43(13):3169-76. PubMed ID: 19501381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic in-stream fate modeling of xenobiotic organic compounds: a case study of linear alkylbenzene sulfonates in the Lambro River, Italy.
    Deksissa T; De Pauw D; Vanrolleghem PA
    Environ Toxicol Chem; 2004 Sep; 23(9):2267-78. PubMed ID: 15379006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of synthetic influent data to perform (micro)pollutant wastewater treatment modelling studies.
    Snip LJP; Flores-Alsina X; Aymerich I; Rodríguez-Mozaz S; Barceló D; Plósz BG; Corominas L; Rodriguez-Roda I; Jeppsson U; Gernaey KV
    Sci Total Environ; 2016 Nov; 569-570():278-290. PubMed ID: 27343947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical hazard identification and assessment tool for evaluation of stormwater priority pollutants.
    Eriksson E; Baun A; Mikkelsen PS; Ledin A
    Water Sci Technol; 2005; 51(2):47-55. PubMed ID: 15790227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new analytical approach for the comprehensive characterization of polar xenobiotic organic compounds downgradient of old municipal solid waste (MSW) landfills.
    Preiss A; Berger-Preiss E; Elend M; Gerling S; Kühn S; Schuchardt S
    Anal Bioanal Chem; 2012 Jul; 403(9):2553-61. PubMed ID: 22526634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The risks associated with wastewater reuse and xenobiotics in the agroecological environment.
    Fatta-Kassinos D; Kalavrouziotis IK; Koukoulakis PH; Vasquez MI
    Sci Total Environ; 2011 Sep; 409(19):3555-63. PubMed ID: 20435343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying model pollutants to investigate biodegradation of hazardous XOCs in WWTPs.
    Press-Kristensen K; Ledin A; Schmidt JE; Henze M
    Sci Total Environ; 2007 Feb; 373(1):122-30. PubMed ID: 17196634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia.
    Omar TFT; Aris AZ; Yusoff FM; Mustafa S
    Mar Pollut Bull; 2018 Jun; 131(Pt A):284-293. PubMed ID: 29886949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA.
    Xue J; Kannan K
    Sci Total Environ; 2019 Jan; 648():442-449. PubMed ID: 30121043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of hydrophilic, hydrophobic, and charged xenobiotic organic compounds from greywater using green wall media.
    Abd-Ur-Rehman HM; Prodanovic V; Deletic A; Khan SJ; McDonald JA; Zhang K
    Water Res; 2023 Aug; 242():120290. PubMed ID: 37429135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of organic xenobiotics in urban aquatic environments using time-of-flight mass spectrometry.
    Jernberg J; Pellinen J; Rantalainen AL
    Sci Total Environ; 2013 Apr; 450-451():1-6. PubMed ID: 23454570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sample filtration on the quality of monitoring data reported for organic compounds during wastewater treatment.
    Deo RP; Halden RU
    J Environ Monit; 2010 Feb; 12(2):478-83. PubMed ID: 20145890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.
    Bidwell JR; Becker C; Hensley S; Stark R; Meyer MT
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):286-98. PubMed ID: 19763679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of xenobiotic impact on urban receiving waters by means of statistical methods.
    Musolff A; Leschik S; Schafmeister MT; Reinstorf F; Strauch G; Krieg R; Schirmer M
    Water Sci Technol; 2010; 62(3):684-92. PubMed ID: 20706016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of emerging trace organic compounds onto wastewater sludge solids.
    Stevens-Garmon J; Drewes JE; Khan SJ; McDonald JA; Dickenson ER
    Water Res; 2011 May; 45(11):3417-26. PubMed ID: 21536314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.