These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Chemical host-seeking cues of entomopathogenic nematodes. Zhang X; Li L; Kesner L; Robert CAM Curr Opin Insect Sci; 2021 Apr; 44():72-81. PubMed ID: 33866041 [TBL] [Abstract][Full Text] [Related]
25. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Li XY; Cowles RS; Cowles EA; Gaugler R; Cox-Foster DL Int J Parasitol; 2007 Mar; 37(3-4):365-74. PubMed ID: 17275827 [TBL] [Abstract][Full Text] [Related]
26. Entomopathogenic nematodes for the management of Agrotis ipsilon: effect of instar, nematode species and nematode production method. Ebssa L; Koppenhöfer AM Pest Manag Sci; 2012 Jun; 68(6):947-57. PubMed ID: 22344709 [TBL] [Abstract][Full Text] [Related]
27. Efficacy of indigenous entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae), from Rio Grande do Sul Brazil, against Anastrephafraterculus (Wied.) (Diptera: Tephritidae) in peach orchards. Barbosa-Negrisoli CR; Garcia MS; Dolinski C; Negrisoli AS; Bernardi D; Nava DE J Invertebr Pathol; 2009 Sep; 102(1):6-13. PubMed ID: 19460384 [TBL] [Abstract][Full Text] [Related]
28. Susceptibility of the filbertworm (Cydia latiferreana, Lepidoptera: Tortricidae) and filbert weevil (Curculio occidentalis, Coleoptera: Curculionidae) to entomopathogenic nematodes. Bruck DJ; Walton VM J Invertebr Pathol; 2007 Sep; 96(1):93-6. PubMed ID: 17434523 [TBL] [Abstract][Full Text] [Related]
30. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Ying SH; Feng MG Virulence; 2019 Dec; 10(1):429-437. PubMed ID: 30257619 [TBL] [Abstract][Full Text] [Related]
31. [Nematoda and their use in the control of insects of sanitary and medical significance and insects destructive to plant crops]. Zukowski K Rocz Panstw Zakl Hig; 1987; 38(2):170-7. PubMed ID: 3659779 [No Abstract] [Full Text] [Related]
32. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Lacey LA; Shapiro-Ilan DI Annu Rev Entomol; 2008; 53():121-44. PubMed ID: 17803454 [TBL] [Abstract][Full Text] [Related]
33. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Khanna K; Kohli SK; Ohri P; Bhardwaj R Microbiol Res; 2021 Jul; 248():126755. PubMed ID: 33845302 [TBL] [Abstract][Full Text] [Related]
34. Development of a new application apparatus for entomopathogenic nematodes. Piggott SJ; Clayton R; Matthews GA; Wright DJ Pest Manag Sci; 2003 Dec; 59(12):1344-8. PubMed ID: 14667056 [TBL] [Abstract][Full Text] [Related]
35. Chemoattraction in Pristionchus nematodes and implications for insect recognition. Hong RL; Sommer RJ Curr Biol; 2006 Dec; 16(23):2359-65. PubMed ID: 17141618 [TBL] [Abstract][Full Text] [Related]
36. Higher-order predators and the regulation of insect herbivore populations. Rosenheim JA Annu Rev Entomol; 1998; 43():421-47. PubMed ID: 9444753 [TBL] [Abstract][Full Text] [Related]
37. Formation of new host-parasite systems on the example of nematodes genus Neoaplectana. Sandner H Wiad Parazytol; 1976; 22(4-5):569-72. PubMed ID: 1014697 [No Abstract] [Full Text] [Related]
38. Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR. Campos-Herrera R; El-Borai FE; Duncan LW J Invertebr Pathol; 2012 Oct; 111(2):126-35. PubMed ID: 22841945 [TBL] [Abstract][Full Text] [Related]
39. Facultative scavenging as a survival strategy of entomopathogenic nematodes. San-Blas E; Gowen SR Int J Parasitol; 2008 Jan; 38(1):85-91. PubMed ID: 17662985 [TBL] [Abstract][Full Text] [Related]
40. Genetic engineering of an insect parasite. Gaugler R; Hashmi S Genet Eng (N Y); 1996; 18():135-55. PubMed ID: 8785119 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]