These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 17121795)
61. Cell Squeeze: driving more effective CD8 T-cell activation through cytosolic antigen delivery. Park JC; Bernstein H; Loughhead S; Zwirtes R; Jennings J; Nicolini V; Klein C; Deak LC; Umana P; Trumpfheller C; Sharei A Immunooncol Technol; 2022 Dec; 16():100091. PubMed ID: 36042779 [TBL] [Abstract][Full Text] [Related]
62. Adenovirus-Inspired Virus-Like-Particles Displaying Melanoma Tumor Antigen Specifically Target Human DC Subsets and Trigger Antigen-Specific Immune Responses. Besson S; Laurin D; Chauvière C; Thépaut M; Kleman JP; Pezet M; Manches O; Fieschi F; Aspord C; Fender P Biomedicines; 2022 Nov; 10(11):. PubMed ID: 36359404 [TBL] [Abstract][Full Text] [Related]
63. Bioinspired nano-vaccine construction by antigen pre-degradation for boosting cancer personalized immunotherapy. Zhang QL; Hong S; Dong X; Zheng DW; Liang JL; Bai XF; Wang XN; Han ZY; Zhang XZ Biomaterials; 2022 Aug; 287():121628. PubMed ID: 35704965 [TBL] [Abstract][Full Text] [Related]
64. Supramolecular Peptide Nanofibers Engage Mechanisms of Autophagy in Antigen-Presenting Cells. Rudra JS; Khan A; Clover TM; Endsley JJ; Zloza A; Wang J; Jagannath C ACS Omega; 2017 Dec; 2(12):9136-9143. PubMed ID: 29302635 [TBL] [Abstract][Full Text] [Related]
65. Molecular biology and immunology for clinicians 15: Antigen presenting cells--class I. Sigal LH J Clin Rheumatol; 2001 Dec; 7(6):406-7. PubMed ID: 17039185 [TBL] [Abstract][Full Text] [Related]
66. The structure of an unusual ordered aggregate of papaya mosaic virus protein. Erickson JW; Tollin P; Richardson JF; Burley SK; Bancroft JB Virology; 1982 Apr; 118(1):241-5. PubMed ID: 18635132 [TBL] [Abstract][Full Text] [Related]
67. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Huang Y; Zeng A; Song L Front Immunol; 2023; 14():1255820. PubMed ID: 37691919 [TBL] [Abstract][Full Text] [Related]
68. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. Ziqi W; Kai C; Costabel U; Xiaoju Z Exploration (Beijing); 2022 Jul; 2(5):20210082. PubMed ID: 35941992 [TBL] [Abstract][Full Text] [Related]
69. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. Olivera-Ugarte SM; Bolduc M; Laliberté-Gagné MÈ; Blanchette LJ; Garneau C; Fillion M; Savard P; Dubuc I; Flamand L; Farnòs O; Xu X; Kamen A; Gilbert M; Rabezanahary H; Scarrone M; Couture C; Baz M; Leclerc D Nanomedicine; 2022 Aug; 44():102584. PubMed ID: 35850421 [TBL] [Abstract][Full Text] [Related]
70. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. McFall-Boegeman H; Huang X Expert Rev Vaccines; 2022 Apr; 21(4):453-469. PubMed ID: 35023430 [TBL] [Abstract][Full Text] [Related]
71. MHC class I antigen cross-presentation mediated by PapMV nanoparticles in human antigen-presenting cells is dependent on autophagy. Possamaï D; Hanafi LA; Bellemare-Pelletier A; Hamelin K; Thébault P; Hébert MJ; Gagnon É; Leclerc D; Lapointe R PLoS One; 2021; 16(12):e0261987. PubMed ID: 34972158 [TBL] [Abstract][Full Text] [Related]
72. Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. Patel BK; Wang C; Lorens B; Levine AD; Steinmetz NF; Shukla S ACS Appl Bio Mater; 2020 Jul; 3(7):4179-4187. PubMed ID: 34368641 [TBL] [Abstract][Full Text] [Related]
73. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Venkataraman S; Hefferon K; Makhzoum A; Abouhaidar M Vaccines (Basel); 2021 Jul; 9(7):. PubMed ID: 34358177 [TBL] [Abstract][Full Text] [Related]
74. Alfalfa mosaic virus nanoparticles-based Shahgolzari M; Pazhouhandeh M; Milani M; Fiering S; Khosroushahi AY Nanomedicine (Lond); 2021 Jan; 16(2):97-107. PubMed ID: 33442986 [No Abstract] [Full Text] [Related]
75. Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity. Laliberté-Gagné ME; Bolduc M; Garneau C; Olivera-Ugarte SM; Savard P; Leclerc D Vaccines (Basel); 2021 Jan; 9(1):. PubMed ID: 33435570 [TBL] [Abstract][Full Text] [Related]
76. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. Butkovich N; Li E; Ramirez A; Burkhardt AM; Wang SW Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 May; 13(3):e1681. PubMed ID: 33164326 [TBL] [Abstract][Full Text] [Related]
77. Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Chauhan DS; Prasad R; Srivastava R; Jaggi M; Chauhan SC; Yallapu MM Bioconjug Chem; 2020 Sep; 31(9):2021-2045. PubMed ID: 32680422 [TBL] [Abstract][Full Text] [Related]
78. How Computational Epitope Mapping Identifies the Interactions between Nanoparticles Derived from Papaya Mosaic Virus Capsid Proteins and Immune System. Zamani-Babgohari M; Hefferon KL; Huang T; AbouHaidar MG Curr Genomics; 2019 Apr; 20(3):214-225. PubMed ID: 31929728 [TBL] [Abstract][Full Text] [Related]