These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 17121967)
1. Mapping quantitative trait loci using the experimental designs of recombinant inbred populations. Kao CH Genetics; 2006 Nov; 174(3):1373-86. PubMed ID: 17121967 [TBL] [Abstract][Full Text] [Related]
2. Targeted Recombinant Progeny: a design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines. Heifetz EM; Soller M BMC Genet; 2015 Jul; 16():76. PubMed ID: 26148479 [TBL] [Abstract][Full Text] [Related]
3. Linkage analysis of quantitative trait loci in multiple line crosses. Yi N; Xu S Genetica; 2002 Apr; 114(3):217-30. PubMed ID: 12206360 [TBL] [Abstract][Full Text] [Related]
4. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny. Zhang YM; Xu S Genetics; 2004 Apr; 166(4):1981-93. PubMed ID: 15126413 [TBL] [Abstract][Full Text] [Related]
5. Varying coefficient models for mapping quantitative trait loci using recombinant inbred intercrosses. Gong Y; Zou F Genetics; 2012 Feb; 190(2):475-86. PubMed ID: 22345613 [TBL] [Abstract][Full Text] [Related]
6. A study on the mapping of quantitative trait loci in advanced populations derived from two inbred lines. Kao CH; Zeng MH Genet Res (Camb); 2009 Apr; 91(2):85-99. PubMed ID: 19393125 [TBL] [Abstract][Full Text] [Related]
7. A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. Liu Y; Zeng ZB Genet Res; 2000 Jun; 75(3):345-55. PubMed ID: 10893870 [TBL] [Abstract][Full Text] [Related]
8. Multiple-interval mapping for quantitative trait loci controlling endosperm traits. Kao CH Genetics; 2004 Aug; 167(4):1987-2002. PubMed ID: 15342535 [TBL] [Abstract][Full Text] [Related]
9. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Haley CS; Knott SA Heredity (Edinb); 1992 Oct; 69(4):315-24. PubMed ID: 16718932 [TBL] [Abstract][Full Text] [Related]
10. Bayesian multiple quantitative trait loci mapping for recombinant inbred intercrosses. Yuan Z; Zou F; Liu Y Genetics; 2011 May; 188(1):189-95. PubMed ID: 21385723 [TBL] [Abstract][Full Text] [Related]
11. A generalization of the mixture model in the mapping of quantitative trait loci for progeny from a biparental cross of inbred lines. Fisch RD; Ragot M; Gay G Genetics; 1996 May; 143(1):571-7. PubMed ID: 8722805 [TBL] [Abstract][Full Text] [Related]
12. Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Crepieux S; Lebreton C; Servin B; Charmet G Genetics; 2004 Nov; 168(3):1737-49. PubMed ID: 15579720 [TBL] [Abstract][Full Text] [Related]
13. Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. Xie C; Gessler DD; Xu S Genetics; 1998 Jun; 149(2):1139-46. PubMed ID: 9611221 [TBL] [Abstract][Full Text] [Related]
14. Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses. Wang X; Gilbert H; Moreno C; Filangi O; Elsen JM; Le Roy P BMC Genet; 2012 Apr; 13():29. PubMed ID: 22520935 [TBL] [Abstract][Full Text] [Related]
15. A new simple method for improving QTL mapping under selective genotyping. Lee HI; Ho HA; Kao CH Genetics; 2014 Dec; 198(4):1685-98. PubMed ID: 25245793 [TBL] [Abstract][Full Text] [Related]
16. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F Yi Q; Liu Y; Zhang X; Hou X; Zhang J; Liu H; Hu Y; Yu G; Huang Y J Genet; 2018 Mar; 97(1):253-266. PubMed ID: 29666344 [TBL] [Abstract][Full Text] [Related]
17. A simulation study on the accuracy of position and effect estimates of linked QTL and their asymptotic standard deviations using multiple interval mapping in an F(2) scheme. Mayer M; Liu Y; Freyer G Genet Sel Evol; 2004; 36(4):455-79. PubMed ID: 15231234 [TBL] [Abstract][Full Text] [Related]
18. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459 [TBL] [Abstract][Full Text] [Related]
19. Combining two Meishan F2 crosses improves the detection of QTL on pig chromosomes 2, 4 and 6. Tortereau F; Gilbert H; Heuven HC; Bidanel JP; Groenen MA; Riquet J Genet Sel Evol; 2010 Nov; 42(1):42. PubMed ID: 21108822 [TBL] [Abstract][Full Text] [Related]
20. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. You A; Lu X; Jin H; Ren X; Liu K; Yang G; Yang H; Zhu L; He G Genetics; 2006 Feb; 172(2):1287-300. PubMed ID: 16322522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]