BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17122135)

  • 1. Development of the electroretinographic oscillatory potentials in normal and ROP rats.
    Liu K; Akula JD; Hansen RM; Moskowitz A; Kleinman MS; Fulton AB
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5447-52. PubMed ID: 17122135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity.
    Liu K; Akula JD; Falk C; Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2639-47. PubMed ID: 16723481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a brief period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy.
    Dembinska O; Rojas LM; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2481-90. PubMed ID: 12091454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of prior oxygen exposure on the electroretinographic responses of infant rats.
    Reynaud X; Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 1995 Sep; 36(10):2071-9. PubMed ID: 7657546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity.
    Akula JD; Mocko JA; Moskowitz A; Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5788-97. PubMed ID: 18055833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity.
    Akula JD; Hansen RM; Martinez-Perez ME; Fulton AB
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4351-9. PubMed ID: 17724227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual cycle modulation in neurovascular retinopathy.
    Akula JD; Hansen RM; Tzekov R; Favazza TL; Vyhovsky TC; Benador IY; Mocko JA; McGee D; Kubota R; Fulton AB
    Exp Eye Res; 2010 Aug; 91(2):153-61. PubMed ID: 20430026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration.
    Sakai T; Kondo M; Ueno S; Koyasu T; Komeima K; Terasaki H
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4402-9. PubMed ID: 19407007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of N-methyl-DL-aspartic acid (NMDA)-sensitive neurons to generating oscillatory potentials in Royal College of Surgeons rats.
    Harada T; Machida S; Nishimura T; Kurosaka D
    Doc Ophthalmol; 2013 Oct; 127(2):131-40. PubMed ID: 23744447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy.
    Dorfman AL; Polosa A; Joly S; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2436-50. PubMed ID: 19168901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease.
    Grover S; Fishman GA; Birch DG; Locke KG; Rosner B
    Ophthalmology; 2003 Jun; 110(6):1159-63. PubMed ID: 12799241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes.
    Luu CD; Szental JA; Lee SY; Lavanya R; Wong TY
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):482-6. PubMed ID: 19710418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choroidal involution is a key component of oxygen-induced retinopathy.
    Shao Z; Dorfman AL; Seshadri S; Djavari M; Kermorvant-Duchemin E; Sennlaub F; Blais M; Polosa A; Varma DR; Joyal JS; Lachapelle P; Hardy P; Sitaras N; Picard E; Mancini J; Sapieha P; Chemtob S
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6238-48. PubMed ID: 21546530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early inner retinal dysfunction in streptozotocin-induced diabetic rats.
    Kohzaki K; Vingrys AJ; Bui BV
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3595-604. PubMed ID: 18421077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark-adapted oscillatory potentials in preterm infants with and without retinopathy of prematurity.
    Mactier H; Bradnam MS; Hamilton R
    Doc Ophthalmol; 2013 Aug; 127(1):33-40. PubMed ID: 23334439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of murine models of "negative ERG" by single and repetitive light stimuli.
    Tanimoto N; Akula JD; Fulton AB; Weber BH; Seeliger MW
    Doc Ophthalmol; 2016 Apr; 132(2):101-9. PubMed ID: 26996188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrophysiological study of retinal function in the diabetic female rat.
    Ramsey DJ; Ripps H; Qian H
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):5116-24. PubMed ID: 17065533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroretinographic abnormalities in a rat glaucoma model with chronic elevated intraocular pressure.
    Bayer AU; Danias J; Brodie S; Maag KP; Chen B; Shen F; Podos SM; Mittag TW
    Exp Eye Res; 2001 Jun; 72(6):667-77. PubMed ID: 11384155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Background adaptation in a rat model of retinopathy of prematurity.
    Jiang JC; Hansen RM; Reynaud X; Fulton AB
    Doc Ophthalmol; 2002 Jan; 104(1):97-105. PubMed ID: 11949812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in electroretinogram oscillatory potentials during dark adaptation.
    Kuze M; Uji Y
    Jpn J Ophthalmol; 2005; 49(5):420-2. PubMed ID: 16187046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.