These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 17122330)
41. Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice. Islam MZ; Van Dao C; Miyamoto A; Shiraishi M Naunyn Schmiedebergs Arch Pharmacol; 2017 Sep; 390(9):929-938. PubMed ID: 28656320 [TBL] [Abstract][Full Text] [Related]
42. Hypertensive diabetic rats: different effects of streptozotocin treatment on blood pressure in adult SHR and in neonatal SHR. Sato T; Nara Y; Kato Y; Yamori Y Clin Exp Hypertens A; 1991; 13(5):981-90. PubMed ID: 1837761 [TBL] [Abstract][Full Text] [Related]
43. Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Banes-Berceli AK; Ketsawatsomkron P; Ogbi S; Patel B; Pollock DM; Marrero MB Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1291-9. PubMed ID: 17526654 [TBL] [Abstract][Full Text] [Related]
45. Lack of blood pressure salt-sensitivity supports a preglomerular site of action of nitric oxide in Type I diabetic rats. Brands MW; Bell TD; Fleming C; Labazi H; Sturgis LC Clin Exp Pharmacol Physiol; 2007; 34(5-6):475-9. PubMed ID: 17439418 [TBL] [Abstract][Full Text] [Related]
46. Up-regulation of the Ang II/AT1 receptor may compensate for the loss of gastric antrum ICC via the PI3k/Akt signaling pathway in STZ-induced diabetic mice. Zhang CM; Huang X; Lu HL; Meng XM; Liu DH; Kim YC; Xu WX Mol Cell Endocrinol; 2016 Mar; 423():77-86. PubMed ID: 26773730 [TBL] [Abstract][Full Text] [Related]
47. Radiotelemetric monitoring of blood pressure and mesenteric arterial bed responsiveness in rats with streptozotocin-induced diabetes. Tatchum-Talom R; Gopalakrishnan V; McNeill JR Can J Physiol Pharmacol; 2000 Sep; 78(9):721-8. PubMed ID: 11007535 [TBL] [Abstract][Full Text] [Related]
48. Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Nakamura T; Terajima T; Ogata T; Ueno K; Hashimoto N; Ono K; Yano S Biol Pharm Bull; 2006 Jun; 29(6):1167-74. PubMed ID: 16755011 [TBL] [Abstract][Full Text] [Related]
49. Neuroendocrine effects of dehydration in mice lacking the angiotensin AT1a receptor. Morris M; Li P; Callahan MF; Oliverio MI; Coffman TM; Bosch SM; Diz DI Hypertension; 1999 Jan; 33(1 Pt 2):482-6. PubMed ID: 9931152 [TBL] [Abstract][Full Text] [Related]
50. Essential role of angiotensin II type 1a receptors in the host vascular wall, but not the bone marrow, in the pathogenesis of angiotensin II-induced atherosclerosis. Koga J; Egashira K; Matoba T; Kubo M; Ihara Y; Iwai M; Horiuchi M; Sunagawa K Hypertens Res; 2008 Sep; 31(9):1791-800. PubMed ID: 18971558 [TBL] [Abstract][Full Text] [Related]
51. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Daugherty A; Rateri DL; Lu H; Inagami T; Cassis LA Circulation; 2004 Dec; 110(25):3849-57. PubMed ID: 15596561 [TBL] [Abstract][Full Text] [Related]
52. Effects of ACE-I on diabetic cardiovascular complications: anti-hypertensive and non-antihypertensive doses. Udayachalerm W; Vechakarn O; Patumraj S J Med Assoc Thai; 2001 Jun; 84 Suppl 1():S306-13. PubMed ID: 11529349 [TBL] [Abstract][Full Text] [Related]
53. Distinct roles of angiotensin receptors in autonomic dysreflexia following high-level spinal cord injury in mice. Järve A; Todiras M; Lian X; Filippelli-Silva R; Qadri F; Martin RP; Gollasch M; Bader M Exp Neurol; 2019 Jan; 311():173-181. PubMed ID: 30315807 [TBL] [Abstract][Full Text] [Related]
54. Angiotensin-(1-7) contributes to insulin-sensitizing effects of angiotensin-converting enzyme inhibition in obese mice. Loloi J; Miller AJ; Bingaman SS; Silberman Y; Arnold AC Am J Physiol Endocrinol Metab; 2018 Dec; 315(6):E1204-E1211. PubMed ID: 30300010 [TBL] [Abstract][Full Text] [Related]
55. Effect of varying dose and administration of streptozotocin on blood sugar in male CD1 mice. Ventura-Sobrevilla J; Boone-Villa VD; Aguilar CN; Román-Ramos R; Vega-Avila E; Campos-Sepúlveda E; Alarcón-Aguilar F Proc West Pharmacol Soc; 2011; 54():5-9. PubMed ID: 22423571 [TBL] [Abstract][Full Text] [Related]
56. Blood pressure and metabolic effects of streptozotocin in Wistar-Kyoto and spontaneously hypertensive rats. Yamamoto J Clin Exp Hypertens A; 1988; 10(6):1065-83. PubMed ID: 2975970 [TBL] [Abstract][Full Text] [Related]
57. Renal vasoconstrictor and pressor responses to angiotensin IV in mice are AT1a-receptor mediated. Yang R; Walther T; Gembardt F; Smolders I; Vanderheyden P; Albiston AL; Chai SY; Dupont AG J Hypertens; 2010 Mar; 28(3):487-94. PubMed ID: 19907343 [TBL] [Abstract][Full Text] [Related]
58. Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat. Zimpelmann J; Kumar D; Levine DZ; Wehbi G; Imig JD; Navar LG; Burns KD Kidney Int; 2000 Dec; 58(6):2320-30. PubMed ID: 11115066 [TBL] [Abstract][Full Text] [Related]
59. Effects of angiotensin II on insulin receptor binding and mRNA levels in normal and diabetic rats. Sechi LA; Griffin CA; Zingaro L; Valentin JP; Bartoli E; Schambelan M Diabetologia; 1997 Jul; 40(7):770-7. PubMed ID: 9243097 [TBL] [Abstract][Full Text] [Related]
60. Baroreflex and chemoreflex dysfunction in streptozotocin-diabetic rats. Dall'Ago P; Fernandes TG; Machado UF; Belló AA; Irigoyen MC Braz J Med Biol Res; 1997 Jan; 30(1):119-24. PubMed ID: 9222413 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]