BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 17122344)

  • 1. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique group of self-splicing introns in bacteriophage T4.
    Khan AU; Ajamaluddin M; Ahmad M
    Indian J Biochem Biophys; 2001 Oct; 38(5):289-93. PubMed ID: 11886074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo.
    Semrad K; Schroeder R
    Genes Dev; 1998 May; 12(9):1327-37. PubMed ID: 9573049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of mRNA splicing by a second-site intragenic suppressor in the T4 ribonucleotide reductase (small subunit) self-splicing intron.
    Khan AU; Ahmad M; Lal SK
    Biochem Biophys Res Commun; 2000 Feb; 268(2):359-64. PubMed ID: 10679208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.
    Khan AU; Lal SK; Ahmad M
    Biochem Biophys Res Commun; 1998 Jan; 242(1):10-5. PubMed ID: 9439601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.
    Lal SK; Hall DH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):943-9. PubMed ID: 8240371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Better late than early: delayed translation of intron-encoded endonuclease I-TevI is required for efficient splicing of its host group I intron.
    Gibb EA; Edgell DR
    Mol Microbiol; 2010 Oct; 78(1):35-46. PubMed ID: 20497330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrupted thymidylate synthase gene of bacteriophages T2 and T6 and other potential self-splicing introns in the T-even bacteriophages.
    Chu FK; Maley F; Martinez J; Maley GF
    J Bacteriol; 1987 Sep; 169(9):4368-75. PubMed ID: 2442142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation across the 5'-splice site interferes with autocatalytic splicing.
    Ohman-Hedén M; Ahgren-Stålhandske A; Hahne S; Sjöberg BM
    Mol Microbiol; 1993 Mar; 7(6):975-82. PubMed ID: 8483423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe.
    Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M
    J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phage T4 nrdB intron: a deletion mutant of a version found in the wild.
    Eddy SR; Gold L
    Genes Dev; 1991 Jun; 5(6):1032-41. PubMed ID: 2044951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neomycin B inhibits splicing of the td intron indirectly by interfering with translation and enhances missplicing in vivo.
    Waldsich C; Semrad K; Schroeder R
    RNA; 1998 Dec; 4(12):1653-63. PubMed ID: 9848660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-directed, hydroxylamine-generated suppressor mutation in the P3 pairing region of the bacteriophage T4 td intron partially restores self-splicing capability.
    Brown MD; DeYoung KL; Hall DH
    Mol Microbiol; 1994 Jul; 13(1):89-95. PubMed ID: 7984096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous shuffling of domains between introns of phage T4.
    Bryk M; Belfort M
    Nature; 1990 Jul; 346(6282):394-6. PubMed ID: 2197562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH dependence of self-splicing by the group IA2 intron in a pre-mRNA derived from the nrdB gene of bacteriophage T4.
    Sjögren AS; Strömberg R; Sjöberg BM
    Nucleic Acids Res; 1997 Sep; 25(17):3543-9. PubMed ID: 9254717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational control of intron splicing in eukaryotes.
    Jaillon O; Bouhouche K; Gout JF; Aury JM; Noel B; Saudemont B; Nowacki M; Serrano V; Porcel BM; Ségurens B; Le Mouël A; Lepère G; Schächter V; Bétermier M; Cohen J; Wincker P; Sperling L; Duret L; Meyer E
    Nature; 2008 Jan; 451(7176):359-62. PubMed ID: 18202663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and characterization of mutations induced by nitrous acid or hydroxylamine in the intron-containing thymidylate synthase gene of bacteriophage T4.
    Brown MD; Povinelli CM; Hall DH
    Biochem Genet; 1993 Dec; 31(11-12):507-20. PubMed ID: 8166624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.